Skip to main content
Log in

Are bursal-sided supraspinatus tendon lesions caused by subacromial impingement?

A radiological matched-pair analysis

Werden bursalseitige Supraspinatussehnenläsionen durch subakromiales Impingement verursacht?

Eine radiologische Matched-Pair-Analyse

  • Originalarbeit
  • Published:
Obere Extremität Aims and scope Submit manuscript

Abstract

Background

Mechanical outlet impingement is believed to be a significant factor in the pathogenesis of bursal-sided supraspinatus (SSP) tendon partial tear, a rare and poorly described entity. This relationship has not yet been confirmed.

Objective

We compared the radiological impingement parameters between complete, isolated SSP tears and bursal-sided SSP tears. The study hypothesis was that the impingement parameters in the bursal-sided SSP tear group would be significantly more pronounced.

Materials and methods

In total, 43 patients with bursal-sided SSP tendon partial tear (group 1; n = 43) and 43 patients with complete, isolated SSP tendon tear (group 2; n = 43) were included and matched for age (groups 1 and 2: 58 ± 9 years) and gender (70% male and 30% female patients). Standardized preoperative radiographs (anteroposterior; outlet view) were compared for radiological impingement parameters: critical shoulder angle (CSA), lateral acromial angle (LAA), acromiohumeral index (AHI), acromiohumeral distance (AHD), acromion type according to Bigliani (ATB).

Results

Radiological parameters did not differ significantly between groups: CSA: 36° ± 4° (group 1) and 36° ± 4° (group 2); LAA: 79° ± 6° vs. 80° ± 8°; AHD: 11 mm ± 2 mm vs. 10 mm ± 2 mm. The AHI was 0.7 ± 0.1 for both groups. Furthermore, ATB II was most common in both groups (group 1 = 74%; group 2 = 63%), followed by ATB I (group 1 = 14%; group 2 = 23%) and ATB III (group 1 = 12%; group 2 = 14%; p = 0.443).

Conclusion

We found no difference in radiological impingement parameters between bursal-sided and complete SSP tears and therefore reject the study hypothesis. Mechanical outlet impingement does not seem to play a greater role in the development of bursal-sided lesions compared to complete SSP lesions.

Zusammenfassung

Hintergrund

Das mechanische Outlet-Impingement (MOI) wird als ein bedeutender Faktor bei der Pathogenese von Partialrupturen der bursaseitigen Supraspinatussehne (SSP) betrachtet. Allerdings wurde dieser Zusammenhang bisher nicht bestätigt.

Ziel

Ziel der vorliegenden Arbeit war ein Vergleich der radiologischen Impingement-Parameter von Patienten mit vollständigen, isolierten SSP-Läsionen mit denen von Patienten mit bursaseitigen SSP-Läsionen. Die Studienhypothese bestand darin, dass die Impingement-Parameter in der Gruppe mit bursaseitigen SSP-Rupturen signifikant ausgeprägter sein würden.

Material und Methoden

In diese Studie wurden 43 Patienten mit bursaseitigen SSP-Partialläsionen (Gruppe 1; n = 43) und 43 Patienten mit vollständigen, isolierten Läsionen der SSP-Sehne (Gruppe 2; n = 43) einbezogen. Die Patienten wurden hinsichtlich des Alters (Gruppe 1 und 2: 58 ± 9 Jahre) und Geschlechts (70 % männlich, 30 % weiblich) gematcht. Die standardisierten präoperativen Röntgenaufnahmen (a.-p.- und Outlet-Aufnahme) wurden hinsichtlich folgender radiologischer Impingement-Parameter verglichen: kritischer Schulterwinkel (CSA), lateraler Akromialwinkel (LAA), Akromiohumeralindex (AHI), Akromiohumeralabstand (AHD) und Akromiontyp nach Bigliani (ATB).

Ergebnisse

Die radiologischen Parameter unterschieden sich nicht signifikant (p = 0,371): Der CSA betrug 36° ± 4° in Gruppe 1 und 36° ± 4° in Gruppe 2. Der LAA betrug 79° ± 6° vs. 80° ± 8° in Gruppe 1 und 2, der AHD betrug 11 mm ± 2 mm vs. 10 mm ± 2 mm, und der AHI lag bei 0,70 ± 0,1 in beiden Gruppen. Ein ATB II war der häufigste beobachtete Typ in beiden Gruppen (Gruppe 1 = 74 %, Gruppe 2 = 63 %), gefolgt von ATB I (Gruppe 1 = 14 %, Gruppe 2 = 23 %) und ATB III (Gruppe 1 = 12 %, Gruppe 2 = 14 %). Dieser Unterschied war statistisch nicht signifikant (p = 0,443).

Schlussfolgerung

Es fand sich kein Unterschied in den radiologischen Impingement-Parametern zwischen bursaseitigen und vollständigen SSP-Läsionen, daher verwerfen die Autoren die Studienhypothese. MOI scheint keine größere Rolle bei der Entwicklung von bursaseitigen im Vergleich zu vollständigen SSP-Läsionen zu spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Neer CS (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. https://doi.org/10.2106/00004623-197254010-00003

    Article  PubMed  Google Scholar 

  2. Bigliani LU, Levine WN (1997) Current concepts review. Subacromial impingement syndrome. J Bone Joint Surg Am 79(12):79A. https://doi.org/10.2106/00004623-199712000-00012

    Article  Google Scholar 

  3. Codman E (1934) Tendinitis of the short rotators. The shoulder rupture of the suprasìnatus tendon and other lesions in or about the subacromial bursa. Thomas Todd, Boston

    Google Scholar 

  4. Harvie P et al (2004) Genetic influences in the aetiology of tears of the rotator cuff. J Bone Joint Surg Br. https://doi.org/10.1302/0301-620x.86b5.14747

    Article  PubMed  Google Scholar 

  5. Hashimoto T, Nobuhara K, Hamada T (2003) Pathologic evidence of degeneration as a primary cause of rotator cuff tear. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000092974.12414.22

    Article  PubMed  Google Scholar 

  6. Uhthoff HK, Sano H (1997) Pathology of failure of the rotator cuff tendon. Orthop Clin North Am. https://doi.org/10.1016/S0030-5898(05)70262-5

    Article  PubMed  Google Scholar 

  7. Yang S et al (2009) Biomechanical analysis of bursal-sided partial thickness rotator cuff tears. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2008.12.011

    Article  PubMed  Google Scholar 

  8. Yamanaka K, Matsumoto T (1994) The joint side tear of the rotator cuff: a followup study by arthrography. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199407000-00012

    Article  PubMed  Google Scholar 

  9. Lo IK, Denkers MR, More KD, Nelson AA, Thornton GM, Boorman RS (2018) Partial-thickness rotator cuff tears: clinical and imaging outcomes and prognostic factors of successful nonoperative treatment. Open Access J Sports Med. https://doi.org/10.2147/oajsm.s153236

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ranebo MC, Björnsson Hallgren HC, Norlin R, Adolfsson LE (2017) Clinical and structural outcome 22 years after acromioplasty without tendon repair in patients with subacromial pain and cuff tears. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2016.11.012

    Article  PubMed  Google Scholar 

  11. Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C (2013) Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint? A radiological study of the critical shoulder angle. Bone Joint J. https://doi.org/10.1302/0301-620X.95B7.31028

    Article  PubMed  Google Scholar 

  12. Banas MP, Miller RJ, Totterman S (1995) Relationship between the lateral acromion angle and rotator cuff disease. J Shoulder Elbow Surg. https://doi.org/10.1016/S1058-2746(05)80038-2

    Article  PubMed  Google Scholar 

  13. Nyffeler RW, Werner CML, Sukthankar A, Schmid MR, Gerber C (2006) Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.D.03042

    Article  PubMed  Google Scholar 

  14. Bigliani LU, Morrison DS, April EW (1986) The morphology of the acromion and its relationship to rotator cuff tears. Ortho Trans. https://doi.org/10.7205/milmed.171.10.1035

    Article  Google Scholar 

  15. Ames JB, Horan MP, Van der Meijden OAJ, Leake MJ, Millett PJ (2012) Association between acromial index and outcomes following arthroscopic repair of full-thickness rotator cuff tears. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.K.01500

    Article  PubMed  Google Scholar 

  16. Balke M, Schmidt C, Dedy N, Banerjee M, Bouillon B, Liem D (2013) Correlation of acromial morphology with impingement syndrome and rotator cuff tears. Acta Orthop. https://doi.org/10.3109/17453674.2013.773413

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nicholson GP, Goodman DA, Flatow EL, Bigliani LU (1996) The acromion: morphologic condition and age-related changes. A study of 420 scapulas. J Shoulder Elbow Surg. https://doi.org/10.1016/S1058-2746(96)80024-3

    Article  PubMed  Google Scholar 

  18. Kaur R, Dahuja A, Garg S, Bansal K, Garg RS, Singh P (2019) Correlation of acromial morphology in association with rotator cuff tear: a retrospective study. Pol J Radiol. https://doi.org/10.5114/pjr.2019.90277

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pandey V et al (2016) Does scapular morphology affect the integrity of the rotator cuff? J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2015.09.016

    Article  PubMed  Google Scholar 

  20. Blonna D et al (2016) Predominance of the critical shoulder angle in the pathogenesis of degenerative diseases of the shoulder. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2015.11.059

    Article  PubMed  Google Scholar 

  21. Chalmers PN, Salazar D, Steger-May K, Chamberlain AM, Yamaguchi K, Keener JD (2017) Does the critical shoulder angle correlate with rotator cuff tear progression? Clin Orthop Relat Res. https://doi.org/10.1007/s11999-017-5249-1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cherchi L, Ciornohac JF, Godet J, Clavert P, Kempf JF (2016) Critical shoulder angle: measurement reproducibility and correlation with rotator cuff tendon tears. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2016.03.017

    Article  PubMed  Google Scholar 

  23. Cunningham G, Nicodème-Paulin E, Smith MM, Holzer N, Cass B, Young AA (2018) The greater tuberosity angle: a new predictor for rotator cuff tear. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2018.02.051

    Article  PubMed  Google Scholar 

  24. Daggett M, Werner B, Collin P, Gauci MO, Chaoui J, Walch G (2015) Correlation between glenoid inclination and critical shoulder angle: a radiographic and computed tomography study. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2015.07.013

    Article  PubMed  Google Scholar 

  25. Gomide LC, do Carmo TC, Bergo GHM, Oliveira GA, Macedo IS (2017) Relationship between the critical shoulder angle and the development of rotator cuff lesions: a retrospective epidemiological study. Rev Bras Ortop (Sao Paulo). https://doi.org/10.1016/j.rboe.2017.06.002

    Article  Google Scholar 

  26. Moor BK, Wieser K, Slankamenac K, Gerber C, Bouaicha S (2014) Relationship of individual scapular anatomy and degenerative rotator cuff tears. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2013.11.008

    Article  PubMed  Google Scholar 

  27. Shinagawa K et al (2018) Critical shoulder angle in an East Asian population: correlation to the incidence of rotator cuff tear and glenohumeral osteoarthritis. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2018.03.013

    Article  PubMed  Google Scholar 

  28. Seo J, Heo K, Kwon S, Yoo J (2019) Critical shoulder angle and greater tuberosity angle according to the partial thickness rotator cuff tear patterns. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2019.05.005

    Article  PubMed  Google Scholar 

  29. Spiegl UJ, Horan MP, Smith SW, Ho CP, Millett PJ (2016) The critical shoulder angle is associated with rotator cuff tears and shoulder osteoarthritis and is better assessed with radiographs over MRI. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3587-7

    Article  PubMed  Google Scholar 

  30. Cotty P et al (1988) Rupture of the rotator cuff. Quantification of indirect signs in standard radiology and the Leclercq maneuver. J Radiol

  31. Neer CS (1983) Impingement lesions. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-198303000-00010

    Article  PubMed  Google Scholar 

  32. Weiner DS, Macnab I (1970) Superior migration of the humeral head. J Bone Joint Surg Br 52(3):524–527. https://doi.org/10.1302/0301-620X.52B3.524

    Article  CAS  PubMed  Google Scholar 

  33. Nové-Josserand L, Boulahia A, Levigne C, Noel E, Walch G (1999) Espace coraco-humeral et rupture de la coiffe des rotateurs de l’epaule. Rev Chir Orthop Reparatrice Appar Mot. https://doi.org/10.1016/b978-2-294-71318-7.00020-4

    Article  PubMed  Google Scholar 

  34. Kum DH, Kim JH, Park KM, Lee ES, Park YB, Yoo JC (2017) Acromion index in korean population and its relationship with rotator cuff tears. Clin Orthop Surg. https://doi.org/10.4055/cios.2017.9.2.218

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saupe N, Pfirrmann CWA, Schmid MR, Jost B, Werner CML, Zanetti M (2006) Association between rotator cuff abnormalities and reduced acromiohumeral distance. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.05.0435

    Article  PubMed  Google Scholar 

  36. McCreesh KM, Crotty JM, Lewis JS (2015) Acromiohumeral distance measurement in rotator cuff tendinopathy: Is there a reliable, clinically applicable method? A systematic review. Br J Sports Med. https://doi.org/10.1136/bjsports-2012-092063

    Article  PubMed  Google Scholar 

  37. Singleton N, Agius L, Andrews S (2017) The acromiohumeral centre edge angle: a new radiographic measurement and its association with rotator cuff pathology. J Orthop Surg. https://doi.org/10.1177/2309499017727950

    Article  Google Scholar 

  38. Tétreault P, Krueger A, Zurakowski D, Gerber C (2004) Glenoid version and rotator cuff tears. J Orthop Res 22(1):202–207. https://doi.org/10.1016/S0736-0266(03)00116-5

    Article  PubMed  Google Scholar 

  39. Kim JR, Ryu KJ, Hong IT, Kim BK, Kim JH (2012) Can a high acromion index predict rotator cuff tears? Int Orthop. https://doi.org/10.1007/s00264-012-1499-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miyazaki AN et al (2011) Comparison between the acromion index and rotator cuff tears in the Brazilian and Japanese populations. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2011.04.028

    Article  PubMed  Google Scholar 

  41. Torrens C, López JM, Puente I, Cáceres E (2007) The influence of the acromial coverage index in rotator cuff tears. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2006.07.006

    Article  PubMed  Google Scholar 

  42. Zumstein MA, Jost B, Hempel J, Hodler J, Gerber C (2008) The clinical and structural long-term results of open repair of massive tears of the rotator cuff. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.G.00677

    Article  PubMed  Google Scholar 

  43. Hamid N, Omid R, Yamaguchi K, Steger-May K, Stobbs G, Keener JD (2012) Relationship of radiographic acromial characteristics and rotator cuff disease: a prospective investigation of clinical, radiographic, and sonographic findings. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2011.09.028

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin CL, Chen YW, Lin LF, Chen CP, Liou TH, Huang SW (2020) Accuracy of the critical shoulder angle for predicting rotator cuff tears in patients with nontraumatic shoulder pain. Orthop J Sports Med. https://doi.org/10.1177/2325967120918995

    Article  PubMed  PubMed Central  Google Scholar 

  45. Balke M, Liem D, Greshake O, Hoeher J, Bouillon B, Banerjee M (2016) Differences in acromial morphology of shoulders in patients with degenerative and traumatic supraspinatus tendon tears. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-014-3499-y

    Article  PubMed  Google Scholar 

  46. Hyvönen P, Lohi S, Jalovaara P (1998) Open acromioplasty does not prevent the progression of an impingement syndrome to a tear. Nine-year follow-up of 96 cases. J Bone Joint Surg Br. https://doi.org/10.1302/0301-620X.80B5.8533

    Article  PubMed  Google Scholar 

  47. Bond EC et al (2017) The role of acromioplasty when repairing rotator cuff tears—no difference in pain or functional outcome at 24 months in a cohort of 2,441 patients. N Z Med J. https://doi.org/10.2106/jbjs.22.01019

    Article  PubMed  Google Scholar 

  48. Chahal J et al (2012) The role of subacromial decompression in patients undergoing arthroscopic repair of full-thickness tears of the rotator cuff: a systematic review and meta-analysis. Arthroscopy. https://doi.org/10.1016/j.arthro.2011.11.022

    Article  PubMed  Google Scholar 

  49. Ketola S et al (2009) Does arthroscopic acromioplasty provide any additional value in the treatment of shoulder impingement syndrome? A two-year randomised controlled trial. J Bone Joint Surg Br. https://doi.org/10.1302/0301-620X.91B10.22094

    Article  PubMed  Google Scholar 

  50. Ketola S, Lehtinen J, Elo P, Kortelainen S, Huhtala H, Arnala I (2016) No difference in long-term development of rotator cuff rupture and muscle volumes in impingement patients with or without decompression: a randomized MRI study of 140 patients. Acta Orthop. https://doi.org/10.1080/17453674.2016.1177780

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kolk A et al (2017) Does acromioplasty result in favorable clinical and radiologic outcomes in the management of chronic subacromial pain syndrome? A double-blinded randomized clinical trial with 9 to 14 years’ follow-up. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2017.03.021

    Article  PubMed  Google Scholar 

  52. Mardani-Kivi M, Karimi A, Keyhani S, Hashemi-Motlagh K, Saheb-Ekhtiari K (2016) Rotator cuff repair: is there any role for acromioplasty? Phys Sportsmed. https://doi.org/10.1080/00913847.2016.1216717

    Article  PubMed  Google Scholar 

  53. Paloneva J, Lepola V, Karppinen J, Ylinen J, Äärimaa V, Mattila VM (2015) Declining incidence of acromioplasty in Finland. Acta Orthop. https://doi.org/10.3109/17453674.2014.977703

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saltychev M, Äärimaa V, Virolainen P, Laimi K (2015) Conservative treatment or surgery for shoulder impingement: systematic review and meta-analysis. Disabil Rehabil. https://doi.org/10.3109/09638288.2014.907364

    Article  PubMed  Google Scholar 

  55. Shin SJ, Oh JH, Chung SW, Song MH (2012) The efficacy of acromioplasty in the arthroscopic repair of small- to medium-sized rotator cuff tears without acromial spur: prospective comparative study. Arthroscopy. https://doi.org/10.1016/j.arthro.2011.10.016

    Article  PubMed  Google Scholar 

  56. Cordasco FA, Backer M, Craig EV, Klein D, Warren RF (2002) The partial-thickness rotator cuff tear: is acromioplasty without repair sufficient? Am J Sports Med. https://doi.org/10.1177/03635465020300021801

    Article  PubMed  Google Scholar 

  57. Ellman H (1990) Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199005000-00010

    Article  PubMed  Google Scholar 

  58. Eraghi A (2020) Acromioplasty in the surgical operations of partial-thickness rotator cuff tears: a comprehensive review. J Family Med Prim Care. https://doi.org/10.4103/jfmpc.jfmpc_870_19

    Article  PubMed  PubMed Central  Google Scholar 

  59. Itoi E, Tabata S (1992) Incomplete rotator cuff tears: results of operative treatment. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199211000-00016

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SF. The first draft of the manuscript was written by SF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sebastian Fromm.

Ethics declarations

Conflict of interest

S. Fromm, S. Lichtenberg, M. Loew, P. Habermeyer and M. Schnetzke declare that they have no competing interests.

The study was in agreement with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

figure qr

Scan QR code & read article online

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fromm, S., Lichtenberg, S., Loew, M. et al. Are bursal-sided supraspinatus tendon lesions caused by subacromial impingement?. Obere Extremität (2024). https://doi.org/10.1007/s11678-024-00795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11678-024-00795-7

Keywords

Schlüsselwörter

Navigation