Skip to main content

Advertisement

Log in

Lokale Applikation von Deferroxamin zur Verbesserung der Regeneration peripherer Nerven im Tierversuch

Influence of local deferoxamine application on peripheral nerve regeneration in an animal study

  • Originalarbeit
  • Published:
Obere Extremität Aims and scope Submit manuscript

Zusammenfassung

Noch immer stellt die Verbesserung der Ergebnisse nach Verletzung peripherer Nerven eine Herausforderung für die Wissenschaft dar. Ziel dieser Arbeit war es, den Einfluss eines Eisenchelators, nämlich des Deferroxamins (DFO), auf die Regeration peripherer Nerven zu untersuchen.

Bei Tieren der Gruppe I (n=12) wurde der rechte N. medianus nach dessen Durchtrennung mit einer einfachen End-zu-End-Nervennaht behandelt. Die Nahtseite wurde in Gruppe II (n=12) zusätzlich mit einem 1 cm langen V.-jugularis-externa-Segment umhüllt. Bei Tieren der Gruppe III (n=12) wurde die Vene mit unbeladenen Lipidpartikeln und in Gruppe IV (n=12) mit DFO beladenen Partikeln (Perineurin©) gefüllt. Zur Analyse der Regeneration des peripheren Nerven evaluierten wir postoperativ Greiftest, Histologie, Elektrophysiologie und das Muskelgewicht.

Der Vergleich der Ergebnisse aller Gruppen zeigte eine erhöhte Nervenfaserdichte sowie eine schnellere funktionelle Nervenregeneration im Greiftest bei Tieren der Gruppe IV. Die Anwendung von DFO führte bei der Neurographie zu einer herabgesetzten Reizschwelle und Latenz sowie einer erhöhten Nervenleitgeschwindigkeit.

So belegen die Ergebnisse dieser Studie einen positiven Einfluss der lokalen Anwendung von DFO auf die Regeneration am peripheren Nerven nach einer einfachen Nervennaht.

Abstract

Improving results after peripheral nerve injury is still a challenge for science. The aim of the present study was to investigate the effect of local deferoxamine (DFO) administration on postoperative outcome in the rat median nerve reconstruction model.

In group I (n=12) animals, the right median nerve was repaired by end-to-end neurorhaphy after dissection. The suture site was additionally wrapped by a 1 cm empty external jugular vein segment in group II (n=12). In animals of group III (n=12), the vein was filled with unloaded lipid particles, and in group IV animals (n=12) the vein was filled with DFO-loaded lipid particles (Perineurin©) For assessment of peripheral nerve regeneration, we postoperatively evaluated the grasping test, histology, electrophysiology, and muscle weight.

Comparing the results of all groups, we could show that intraoperative application of DFO-loaded lipid particles at the neurorhaphy site led to a significant increase in the density of regenerating axons as well as to an accelerated recovery of both muscle tropism and motor function. The electrophysiological results demonstrated a threshold decrease, lower latency, and higher conduction velocity in the DFO-treated animals.

The results of the present study suggest that local administration of DFO might have therapeutic potential for improving postoperative outcome after microsurgical nerve reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Barakat-Walter I, Kraftsik R, Schenker M et al (2007) Thyroid hormone in biodegradable nerve guides stimulates sciatic nerve regeneration: a potential therapeutic approach for human peripheral nerve injuries. J Neurotrauma 24:567–577

    Article  PubMed  Google Scholar 

  2. Bertelli JA, Mira JC (1995) The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat. J Neurosci Methods 58:151–155

    Article  CAS  PubMed  Google Scholar 

  3. Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biological and clinical implications. Blood 110:401–408

    Article  CAS  PubMed  Google Scholar 

  4. Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6:13–26

    Article  CAS  PubMed  Google Scholar 

  5. Dam-Hieu P, Lacroix C, Said G et al (2005) Reduction of postoperative perineural adhesions by Hyaloglide gel: an experimental study in the rat sciatic nerve. Neurosurgery 56:425–433

    PubMed  Google Scholar 

  6. Devanur LD, Evans RW, Evans PJ et al (2008) Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy. Biochem J 409:439–447

    Article  CAS  PubMed  Google Scholar 

  7. Di Patti MC, Persichini T, Mazzone V et al (2004) Interleukin-1 beta upregulates iron efflux in rat C6 glioma cells through modulation of ceruloplasmin and ferroportin-1 synthesis. Neurosci Lett 363:182–186

    Article  Google Scholar 

  8. Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geuna S, Gigo-Benato D, de Castro Rodrigues A (2004) On sampling and sampling errors in histomorphometry of peripheral nerve fibers. Microsurgery 24:72–76

    Article  PubMed  Google Scholar 

  10. Hall S (2005) The response to injury in the peripheral nervous system. J Bone Joint Surg Br 87:1309–1319

    Article  CAS  PubMed  Google Scholar 

  11. Höke A, Mi R (2007) In search of novel treatments for peripheral neuropathies and nerve regeneration. Discov Med 7:109–112

    PubMed  Google Scholar 

  12. Höke A (2006) Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2:448–454

    Article  PubMed  Google Scholar 

  13. Hontanilla B, Aubá C, Gorría O (2007) Nerve regeneration through nerve autografts after local administration of brain-derived neurotrophic factor with osmotic pumps. Neurosurgery 61:1268–1274

    Article  PubMed  Google Scholar 

  14. Kim Y, de Miguel F, Usiene I et al (2006) Injection of skeletal muscle-derived cells into the penis improves erectile function. Int J Impot Res 18:329–334

    Article  CAS  PubMed  Google Scholar 

  15. Klapka N, Hermanns S, Straten G et al (2005) Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 22:3047–3058

    Article  PubMed  Google Scholar 

  16. Liu D, Liu J, Sun D et al (2004) The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma 21:805–816

    Article  PubMed  Google Scholar 

  17. Midha R (2006) Emerging techniques for nerve repair: nerve transfers and nerve guidance tubes. Clin Neurosurg 53:185–190

    PubMed  Google Scholar 

  18. Millesi H (2006) Factors affecting the outcome of peripheral nerve surgery. Microsurgery 26:295–302

    Article  PubMed  Google Scholar 

  19. Molina-Holgado F, Hider RC, Gaeta A et al (2007) Metals ions and neurodegeneration. Biometals 20:639–654

    Article  CAS  PubMed  Google Scholar 

  20. Papalia I, Tos P, Stagno d’Alcontres F et al (2003) On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods 127:43–47

    Article  PubMed  Google Scholar 

  21. Pfister LA, Papaloïzos M, Merkle HP et al (1997) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12:65–82

    Article  Google Scholar 

  22. Piquilloud G, Christen T, Pfister LA et al (2007) Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 26:1109–1117

    Article  PubMed  Google Scholar 

  23. Roganović Z, Misović S, Kronja G et al (2007) Peripheral nerve lesions associated with missile-induced pseudoaneurysms. J Neurosurg 107:765–775

    Article  PubMed  Google Scholar 

  24. Schlosshauer B, Dreesmann L, Schaller H-E et al (2007) Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery 59:740–747

    Article  Google Scholar 

  25. Shieh SJ, Lee JW, Chiu HY (2007) Long-term functional results of primary reconstruction of severe forearm injuries. J Plast Reconstr Aesthet Surg 60:339–348

    Article  PubMed  Google Scholar 

  26. Sinis N, Haerle M, Becker S et al (2007) Neuroma formation in a rat median nerve model – influence of distal stump and muscular coating. Plast Reconstr Surg 3:960–966

    Article  Google Scholar 

  27. Sinis N, Schaller HE, Becker ST et al (2006) Cross-chest median nerve transfer: A new transplantation model for evaluation of regeneration across a 4 cm gap in rats. J Neurosci Methods 156:166–172

    Article  PubMed  Google Scholar 

  28. Sinis N, Schaller HE, Schulte-Eversum C et al (2005) Nerve regeneration across a 2 cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. J Neurosurg 103:1067–1076

    Article  PubMed  Google Scholar 

  29. Snyder AK, Fox IK, Nichols CM et al (2006) Neuroregenerative effects of preinjury FK-506 administration. Plast Reconstr Surg 2:360–367

    Article  Google Scholar 

  30. Stiche CC, Hermanns S, Luhmann H et al (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 11:632–646

    Article  Google Scholar 

  31. Terzis JK, Kostas I (2007) Vein grafts used as nerve conduits for obstetrical brachial plexus palsy reconstruction. Plast Reconstr Surg 120:1930–1941

    Article  CAS  PubMed  Google Scholar 

  32. Zaman K, Ryu H, Hall D et al (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1 ⁄ CREB and increased expression of glycolytic enzymes, p21 [waf1 ⁄ cip1], and erythropoietin. J Neurosci 22:9821–9830

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Werdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werdin, F., Di Scipio, F., Schönle, P. et al. Lokale Applikation von Deferroxamin zur Verbesserung der Regeneration peripherer Nerven im Tierversuch. Obere Extremität 4, 217–223 (2009). https://doi.org/10.1007/s11678-009-0044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11678-009-0044-6

Schlüsselwörter

Keywords

Navigation