Skip to main content
Log in

Carbon sequestration in biomass and soil following reforestation: a case study of the Yangtze River Basin

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The effect of reforestation on carbon sequestration has been extensively studied but there is less understanding of the changes that stand age and vegetation types have on changes in biomass carbon and soil organic carbon (SOC) after reforestation. In this study, 150 reforested plots were sampled across six provinces and one municipality in the Yangtze River Basin (YRB) during 2017 and 2018 to estimate carbon storage in biomass and soil. The results illustrate that site-averaged SOC was greater than site-averaged biomass carbon. There was more carbon sequestered in the biomass than in the soil. Biomass carbon accumulated rapidly in the initial 20 years after planting. In contrast, SOC sequestration increased rapidly after 20 years. In addition, evergreen species had higher carbon density in both biomass and soil than deciduous species and economic species (fruit trees). Carbon sequestration in evergreen and deciduous species is greater than in economic species. Our findings provide new evidence on the divergent responses of biomass and soil to carbon sequestration after reforestation with respect to stand ages and vegetation types. This study provides relevant information for ecosystem management as well as for carbon sequestration and global climate change policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali A, Mattsson E (2017) Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Sci Total Environ 575:6–11

    Article  CAS  Google Scholar 

  • Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For Ecol Manag 401:125–134. https://doi.org/10.1016/j.foreco.2017.06.056

    Article  Google Scholar 

  • Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13:4627–4635. https://doi.org/10.5194/bg-13-4627-2016

    Article  CAS  Google Scholar 

  • Baldocchi D, Penuelas J (2019) The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob Chang Biol 25:1191–1197. https://doi.org/10.1111/gcb.14559

    Article  Google Scholar 

  • Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Chang Biol 20:2393–2405. https://doi.org/10.1111/gcb.12576

    Article  PubMed  Google Scholar 

  • Barns BV, Zak DR, Denton SR, Spurr SH (1998) Forest Ecology, 4th edn. Wiley, New York, p 792

    Google Scholar 

  • Binkley D, Stape JL, Ryan MG, Barnard HR, Fownes J (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67. https://doi.org/10.1007/s10021-001-0055-7

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. https://doi.org/10.1126/science.1155458

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and sealing for tropical forest biomass estimates. Philos Trans R Soc B Biol Sci 359:409–420. https://doi.org/10.1098/rstb.2003.1425

    Article  Google Scholar 

  • Chen XG, Zhang XQ, Zhang YP, Wan CB (2009) Carbon sequestration potential of the stands under the grain for green program in Yunnan Province, China. For Ecol Manag 258:199–206. https://doi.org/10.1016/j.foreco.2008.07.010

    Article  Google Scholar 

  • Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–215. https://doi.org/10.1007/s100219900016

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  Google Scholar 

  • Delang CO (2019) The second phase of the grain for green program: adapting the largest reforestation program in the world to the new conditions in rural China. Environ Manage 64:303–312

    Article  Google Scholar 

  • Delang CO, Yuan Z (2016) China’s Grain for Green program: A Review of the Largest Ecological Restoration and Rural Development Program in the World. Springer, Heidelberg

    Google Scholar 

  • Deng L, Liu GB, Shangguan ZP (2014) Land-use conversion and changing soil carbon stocks in China’s “Grain-for-Green” Program: a synthesis. Glob Chang Biol 20:3544–3556. https://doi.org/10.1111/gcb.12508

    Article  PubMed  Google Scholar 

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  Google Scholar 

  • Fang JY, Di GZ, Piao SL, Chen AP (2007) Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China, Ser D Earth Sci 50:1341–1350. https://doi.org/10.1007/s11430-007-0049-1

    Article  CAS  Google Scholar 

  • Fang JY, Yu GR, Liu LL, Hu SJ, Stuart Chapin F (2018) Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci U S A 115:4015–4020. https://doi.org/10.1073/pnas.1700304115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2015) Global Forest Resources Assessment more information required

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309 (5734)

  • Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262:1400–1408

    Article  Google Scholar 

  • Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008) Carbon allocation in fruit trees: From theory to modelling. Trees-Struct Funct 22:269–282. https://doi.org/10.1007/s00468-007-0176-5

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary productivty decline with age: poetntial causes. Tree 11:378–382

    CAS  PubMed  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Guo QF, Ren H (2014) Productivity as related to diversity and age in planted versus natural forests. Glob Ecol Biogeogr 23:1461–1471. https://doi.org/10.1111/geb.12238

    Article  Google Scholar 

  • Heng RKJ, Onichandran S, Suhailiee KAM, Sait M, Sam S, Empin GB (2014) Estimation of the aboveground biomass in a Dillenia suffruticosa Stand, Malaysia. Taiwan J for Sci 29:69–78

    Google Scholar 

  • Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10:999–1018

    Article  CAS  Google Scholar 

  • Hong SB, Yin GD, Dybzinski R, Cong N (2020) Divergent responses of soil organic carbon to afforestation. Nat Sustain 3:694–700. https://doi.org/10.1038/s41893-020-0557-y

    Article  Google Scholar 

  • Hou GL, Delang CO, Lu XX, Gao L (2019) Soil organic carbon storage varies with stand ages and soil depths following afforestation. Ann For Res. 62:3–20. https://doi.org/10.15287/afr.2018.1294

    Article  Google Scholar 

  • Hou GL, Delang CO, Lu XX, Olschewski R (2019b) Valuing carbon sequestration to finance afforestation projects in China. Forests 10(9):754. https://doi.org/10.3390/f10090754

    Article  Google Scholar 

  • Hou GL, Delang CO, Lu XX, Gao L (2020a) Grouping tree species to estimate afforestation-driven soil organic carbon sequestration. Plant Soil 455(1):507–518. https://doi.org/10.1007/s11104-020-04685-z

    Article  CAS  Google Scholar 

  • Hou GL, Delang CO, Lu XX, Gao L (2020b) Optimizing rotation periods of forest plantations: the effects of carbon accounting regimes. For Policy Econ 118:102263. https://doi.org/10.1016/j.forpol.2020.102263

    Article  Google Scholar 

  • Hou GL, Delang CO, Lu XX, Gao L (2020c) A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved or sempervirent broadleaved or conifer tree species. Ann for Sci 77:92. https://doi.org/10.1007/s13595-020-00997-3

    Article  Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res Biogeosciences. 114

  • Houghton RA, Hackler JL (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Chang Biol 5:481–492. https://doi.org/10.1046/j.1365-2486.1999.00244.x

    Article  Google Scholar 

  • Howlett DS, Moreno G, Mosquera Losada MR, Nair PKR, Nair VD (2011) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monit 13:1897–1904. https://doi.org/10.1039/c1em10059a

    Article  CAS  PubMed  Google Scholar 

  • Jandl R (2006) Secuestro de carbono en bosques: el papel del suelo. Taller internacional sobre secuestro de carbono. IUFRO-RIFALC 9

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Justine MF, Yang W, Wu F, Tan B, Khan MN, Zhao Y (2015) Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6:3665–3682. https://doi.org/10.3390/f6103665

    Article  Google Scholar 

  • Kimble JM, Rice CW, Reed D, Mooney S, Follett RF, Lal R (2007) Soil carbon management: economic, environmental and societal benefits. CRC Press

    Book  Google Scholar 

  • Kong R, Zhang ZX, Zhang FY, Tian JX, Chang J, Jiang SS, Zhu B, Chen X (2020) Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Sci Total Environ 709:136163

    Article  CAS  Google Scholar 

  • Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453

    Article  Google Scholar 

  • Lai L, Huang XJ, Yang H, Chuai XW, Zhang M, Zhong TY, Chen ZG, Chen Y, Wang X, Thompson JR (2016) Carbon emissions from land-use change and management in China between 1990 and 2010. Sci Adv 2:1–9. https://doi.org/10.1126/sciadv.1601063

    Article  CAS  Google Scholar 

  • Li DJ, Niu SL, Luo YQ (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181

    Article  CAS  Google Scholar 

  • Litton CM, Boone Kauffman J (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40:313–320. https://doi.org/10.1111/j.1744-7429.2007.00383.x

    Article  Google Scholar 

  • Liu JG, Li SX, Ouyang ZY, Tam C, Chen XD (2008) Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad Sci U S A 105:9477–9482. https://doi.org/10.1073/pnas.0706436105

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Chen Y, Cai WW, Dong WJ, Xiao JF, Chen JQ, Zhang HC, Xia JZ, Yuan WP (2014) The contribution of China’s Grain to Green Program to carbon sequestration. Landsc Ecol 29:1675–1688. https://doi.org/10.1007/s10980-014-0081-4

    Article  Google Scholar 

  • Liu X, Yang T, Wang Q, Huang FR, Li LH (2018) Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: a meta-analysis. Sci Total Environ 618:1658–1664

    Article  CAS  Google Scholar 

  • Lu F, Hu HF, Sun WJ, Zhu JJ, Liu GB, Zhou WM, Zhang QF, Shi PL, Liu XP, Wu X, Zhang L, Wei XH, Dai LM, Zhang KR, Sun YR, Xue S, Zhang WJ, Xiong DP, Deng L, Liu BJ, Zhou L, Zhang C, Zheng X, Cao JS, Huang Y, He NP, Zhou GY, Bai YF, Xie ZQ, Tang ZY, Wu BF, Fang JY, Liu GH, Yu GR (2018) Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci U S A 115:4039–4044. https://doi.org/10.1073/pnas.1700294115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo AE, Brown S (1993) Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149:27–41

    Article  CAS  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford, p 265

    Google Scholar 

  • Ngo KM, Turner BL, Muller-Landau HC, Davies SJ, Larjavaara M, bin Nik Hassan NF, Lum S, (2013) Carbon stocks in primary and secondary tropical forests in Singapore. For Ecol Manage 296:81–89

    Article  Google Scholar 

  • Omoro LMA, Starr M, Pellikka PKE (2013) Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fenn 47:1–18

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Pérez-Cruzado C, Mansilla-Salinero P, Rodriguez-Soalleiro R, Merino A (2012) Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil 353:333–353

    Article  Google Scholar 

  • Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  CAS  Google Scholar 

  • Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. J Ecol 104:817–827

    Article  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, Di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, Löpez-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. https://doi.org/10.5194/bg-9-2203-2012

    Article  Google Scholar 

  • Rothstein DE, Yermakov Z, Buell AL (2004) Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Can J for Res 34:1908–1918

    Article  Google Scholar 

  • Ryan MG (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:

  • Schimel D, Stephens BB, Fisher JB (2015) Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci 112:436–441

    Article  CAS  Google Scholar 

  • Schulze DE, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059

    Article  CAS  Google Scholar 

  • SFA (2010) The 7th National forest inventory and status of forest resources. For Resour Manag 1:3–10

    Google Scholar 

  • Shvidenko A, Nilsson S (2003) Chemical and physical meteorology a synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus B Chem Phys Meteorol 55(2):391–415. https://doi.org/10.3402/tellusb.v55i2.16722

    Article  Google Scholar 

  • Song XZ, Peng CH, Zhou GM, Jiang H, Wang WF (2014) Chinese grain for green program led to highly increased soil organic carbon levels: a meta-analysis. Sci Rep 4:1–7. https://doi.org/10.1038/srep04460

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, De Courcelles V, de R, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M, (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Science 259:934–941. https://doi.org/10.1126/science.259.5097.934

    Article  CAS  Google Scholar 

  • Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, Han SJ, Ma YX, Hu HF, He NP, Yang YH, Han WX, He HL, Yu GR, Fang JY, Zhou GY (2018) Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc Natl Acad Sci U S A 115:4021–4026. https://doi.org/10.1073/pnas.1700291115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AR, Wang JR, Chen HYH (2007) Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada. Can J for Res 37:2260–2269

    Article  CAS  Google Scholar 

  • Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352. https://doi.org/10.3390/f3020332

    Article  Google Scholar 

  • Tian JX, Chang J, Zhang ZX, Wang YJ, Wu YF, Jiang T (2019) Influence of Three Gorges Dam on downstream low flow. Water (switzerland) 11:65. https://doi.org/10.3390/w11010065

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. https://doi.org/10.1126/science.1060391

    Article  CAS  PubMed  Google Scholar 

  • Tolunay D (2011) Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish J Agric for 35:265–279. https://doi.org/10.3906/tar-0909-369

    Article  CAS  Google Scholar 

  • Tong XW, Brandt M, Yue YM, Ciais P, Rudbeck Jepsen M, Penuelas J, Wigneron JP, Xiao XM, Song XP, Horion S, Rasmussen K, Saatchi S, Fan L, Wang KL, Zhang B, Chen ZC, Wang YH, Li XJ, Fensholt R (2020) Forest management in southern China generates short term extensive carbon sequestration. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-019-13798-8

    Article  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Article  CAS  Google Scholar 

  • Veldkamp E, Becker A, Schwendenmann L, Clark DJA, Schulte-Bisping H (2003) Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob Chang Biol 9:1171–1184. https://doi.org/10.1046/j.1365-2486.2003.00656.x

    Article  Google Scholar 

  • Wang XG, Zhu B, Hua KK, Luo Y, Zhang J, Zhang AB (2013) Assessment of soil organic carbon stock in the upper Yangtze River basin. J Mt Sci 10:866–872

    Article  Google Scholar 

  • Xu L, Yu GR, He NP, Wang QF, Gao Y, Wen D, Li SG, Niu SL, Ge JP (2018) Carbon storage in China’s terrestrial ecosystems: a synthesis. Sci Rep 8:121

    Article  Google Scholar 

  • Yang GS, Xu XB, Li PX (2015) Research on the construction of green ecological corridors in the Yangtze River Economic Belt. Prog Geogr 34:1356–1367

    Article  Google Scholar 

  • Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. J Ecol 103:1245–1252

    Article  Google Scholar 

  • Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749

    Article  Google Scholar 

  • Zhang YL, Song CH, Zhang KR, Cheng XL, Band LE, Zhang QF (2014) Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010 Yulong. J Geophys Res Biogeosciences 119:1092–1109. https://doi.org/10.1002/2014JG002616.Received

    Article  Google Scholar 

  • Zhang FY, Zhang ZX, Kong R, Chang J, Tian JX, Zhu B, Jiang SS, Chen X, Xu CY (2019) Changes in forest net primary productivity in the Yangtze River basin and its relationship with climate change and human activities. Remote Sens. https://doi.org/10.3390/rs11121451

    Article  Google Scholar 

  • Zhao JL, Kang FF, Wang LX, Yu XW, Zhao WH, Son XS, Zhang YL, Chen F, Sun Y, He TF, Han HR (2014) Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoS ONE 9(7):e104464. https://doi.org/10.1371/journal.pone.0094966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the farmers who helped us in the field. We would like to thank the lab staff of the Inner Mongolia Key Lab of River and Lake Ecology, Inner Mongolia University, for their support with the soil analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio O. Delang or Xixi Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China [grant number 12305116].

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Appendix

Appendix

See Fig. 5 and Table 4, 5, 6, 7, 8.

Fig. 5
figure 5

Biomass density variations with plant species diversity

Table 4 Biomass carbon in AGB, litter, BGB and total carbon. AGB = aboveground biomass, BGB = belowground biomass
Table 5 Soil carbon density and carbon sequestration. SOC = soil organic carbon
Table 6 Estimate of fix effects on biomass carbon sequestration. Biomass carbon is a dependent variable. Province, vegetation type and age (covariate) are factors
Table 7 Estimate of fix effects on SOC sequestration. SOC sequestration is a dependent variable. Province, vegetation type and age (covariate) are factors
Table 8 Model Summary and Parameter Estimates (Dependent Variable: biomass density)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Delang, C.O., Hou, G. et al. Carbon sequestration in biomass and soil following reforestation: a case study of the Yangtze River Basin. J. For. Res. 33, 1663–1690 (2022). https://doi.org/10.1007/s11676-021-01445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01445-2

Keywords

Navigation