Skip to main content
Log in

A plotless density estimator with a Norton-Rice distribution for ordered distances

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

A Norton-Rice distribution (NRD) is a versatile, flexible distribution for k ordered distances from a random location to the k nearest objects. In a context of plotless density estimation (PDE) with n randomly chosen sample locations, and distances measured to the k = 6 nearest objects, the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations. More importantly, the three parameters of a NRD followed a simple trend with the order (1, …, 6) of observed distances. The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order. In simulated probability sampling from the seven populations, the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs. However, absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10. In terms of root mean squared error (RMSE), the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up, but otherwise superior to the remaining two investigated PDEs. Coverage of nominal 95% confidence intervals averaged 0.94 for the new proposed estimators and 0.90, 0.96, and 0.90 for the comparison PDEs. Despite tangible improvements in PDEs over the last decades, a globally least biased PDE remains elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “Goodness of Fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press

    Book  Google Scholar 

  • Barbour MT, Gerritsen J (1996) Subsampling of benthic samples: a defense of the fixed-count method. J N Am Benthol Soc 15(3):386–391

    Article  Google Scholar 

  • Byth K (1982) On robust distance-based intensity estimators. Biometrics 38:127–135

    Article  Google Scholar 

  • Chambers RL (2011) Which sample survey strategy? A review of three different approaches. P J Stat 27:337–357

    Google Scholar 

  • Chen MY, Tsai JL (1980) Plotless sampling methods for investigating the arboreal stratum of vegetation. Q J Chin For 13:29–38

    Google Scholar 

  • Chen X, Fanz Y, Tsyrennikovx V (2006) Efficient estimation of semiparametric multivariate copula models. J Am Stat Assoc 101(475):1228–1240

    Article  CAS  Google Scholar 

  • Clayton G, Cox TF (1986) Some robust density estimators for spatial point processes. Biometrics 42:753–767

    Article  Google Scholar 

  • Coddington JA, Griswold CE, Silva D, Peqaranda E, Larcher SF (1991) Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems In: The unity of evolutionary biology. Proceedings of the fourth international congress of systematic and evolutionary biology. Portland, OR, 1991.Vol Proceedings of the fourth international congress of systematic and evolutionary biology, 2 vols, p 44‒60.

  • Cogbill CV, Thurman AL, Williams JW, Zhu J, Mladenoff DJ, Goring SJ (2018) A retrospective on the accuracy and precision of plotless forest density estimators in ecological studies. Ecosphere 9:e02187

    Article  Google Scholar 

  • Condit R, Hubbell SP (1998) Tropical forest census plots: methods and results from barro colorado island. Panama Comp Other Plots, Springer, Berlin, p 211

    Book  Google Scholar 

  • Cottam G, Curtis JT (1956) The use of distance measures in phytosociological sampling. Ecology 37:451–460

    Article  Google Scholar 

  • Cressie NAC, Collins LB (2001) Analysis of spatial point patterns using bundles of product density LISA functions. J Agric Biol Environ Stat 6:1–118

    Article  Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, New York, p 148

    Google Scholar 

  • Ducey MJ (2018) Design-unbiased point-to-object sampling on lines, with applications to areal sampling. Eur J For Res 137:367–383

    Article  Google Scholar 

  • Eberhardt LL (1967) Some developments in distance sampling. Biometrics 27:207–216

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman Hall, Boca Raton, p 436

    Book  Google Scholar 

  • Fehrmann L, Gregoire T, Kleinn C (2011) Triangulation based inclusion probabilities: a design-unbiased sampling approach. Environ Ecol Stat 19:107–123

    Article  Google Scholar 

  • Fischer M (2010) Multivariate copulae. In: Kurowicka D, Joe H (eds) Dependence modeling. World Scientific, Singapore, pp 19–36

    Chapter  Google Scholar 

  • Fleiss JL, Levin B, Paik MC (2013) Statistical methods for rates and proportions. Wiley, New York, p 800

    Google Scholar 

  • Flores O (2005) Déterminisme de la régénération chez quinze espèces d'arbres tropicaux en forêt guyanaise: les effets de l'environnement et de la limitation par la dispersion, Université Montpellier II Montpellier Fr, p 307. https://tel.archives-ouvertes.fr/tel-00297707/document.

  • Gao M (2013) Detecting spatial aggregation from distance sampling: A probability distribution model of nearest neighbor distance. Ecol Res 28:397–405

    Article  Google Scholar 

  • Gerrard DJ (1969) Competition quotient: a new measure of the competition affecting individual forest trees. Mich State Univ Agric Exp Stn 20:1–14

    Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Gregoire TG, Scott CT (2003) Altered selection probabilities caused by avoiding the edge in field surveys. J Agric Biol Environ Stat 8:36–47

    Article  Google Scholar 

  • Gupta A, Song D (1997) Lp-norm spherical distribution. J Statist Plan Infer 60:241–260

    Article  Google Scholar 

  • Haxtema Z, Temesgen H, Marquardt T (2012) Evaluation of n-tree distance sampling for inventory of headwater riparian forests of western oregon. W J Appl For 27:109–117

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, p 534

    Google Scholar 

  • Jamali H, Ebrahimi A, Ardestani EG, Pordel F (2020) Evaluation of plotless density estimators in different plant density intensities and distribution patterns. Glob Ecol Cons 23:e01114. https://doi.org/10.1016/j.gecco.2020.e01114

    Article  Google Scholar 

  • Kendall MG, Moran PP (1963) Geometrical probability. Charles Griffin, London, p 125

    Google Scholar 

  • Kendall MG, Stuart A (1979) The advanced theory of statistics. MacMillan, London, pp 1–748

    Google Scholar 

  • Kleinn C, Vilčko F (2006) A new empirical approach for estimation in k-tree sampling. For Ecol Manag 237:522–533

    Article  Google Scholar 

  • Koay CG, Basser PJ (2006) Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J Magn Reson 179:317–322

    Article  PubMed  CAS  Google Scholar 

  • Koekoek R (1990) Generalizations of laguerre polynomials. J Math Anal Appl 153:576–590

    Article  Google Scholar 

  • Kronenfeld BJ (2009) A plotless density estimator based on the asymptotic limit of ordered distance estimation values. For Sci 55:283–292

    Google Scholar 

  • Lessard VC, Drummer TD, Reed DDA (2002) Precision of density estimates from fixed-radius plots compared to n-tree distance sampling. For Sci 48:1–6

    Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In: Olkin I (ed) Contributions to probability and statistics: essays in honor of harold hotelling. Standford Univ Press, Standford, pp 278–292

    Google Scholar 

  • Lynch TB (2012) A mirage boundary correction method for distance sampling. Can J For Res 42:272–278

    Article  Google Scholar 

  • Lynch TB, Rusydi R (1999) Distance sampling for forest inventory in Indonesian teak plantations. For Ecol Manag 113:215–221

    Article  Google Scholar 

  • Magnussen S (2012a) Fixed-count density estimation with virtual plots. Spat Stat 2:33–46

    Article  Google Scholar 

  • Magnussen S (2012b) A new composite K-tree estimator of stem density. Eur J For Res 131:1513–1527

    Article  Google Scholar 

  • Magnussen S (2014) Robust fixed-count density estimation with virtual plots. Can J For Res 44:377–382

    Article  Google Scholar 

  • Magnussen S (2015) A fixed count sampling estimator of stem density based on a survival function. J For Sci 61:485–495

    Article  Google Scholar 

  • Magnussen S (2016) Improved fixed-count stand-level estimators of stem density, mean diameter, and basal area. Eur J For Res 135:191–202. https://doi.org/10.1007/s10342-015-0930-y

    Article  Google Scholar 

  • Magnussen S, Kleinn C, Picard N (2008) Two new density estimators for distance sampling. Eur J For Res 127:213–224

    Article  Google Scholar 

  • Magnussen S, Fehrmann L, Platt W (2011) An adaptive composite density estimator for distance sampling. Eur J For Res 131:307–320

    Article  Google Scholar 

  • Mark AF, Esler AE (1970) An assessment of the point-centred quarter method of plot-less sampling in some New Zealand forests. Proc N Z Ecol Soc 17:106–110

    Google Scholar 

  • Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes. Chapman Hall/CRC, Boca Raton, p 312

    Google Scholar 

  • Moore PG (1954) Spacing in plant populations. Ecology 35:222–227

    Article  Google Scholar 

  • Morisita M (1954) Estimation of population density by spacing method. Contributions from the department of biology, Faculty of Science, Kyushu University Series E (Biology). 1:187-197

  • Norton K, Rice P, Janes H, Barsis A (1955) The rate of fading in propagation through a turbulent atmosphere. Proc IRE 43:1341–1353

    Article  Google Scholar 

  • Nothdurft A, Saborowski J, Nuske RS, Stoyan D (2010) Density estimation based on k-tree sampling and point pattern reconstruction. Can J For Res 40:953–967

    Article  Google Scholar 

  • Ott PK, Errico D (2016) Revisiting fraser’s triangles as the basis for estimating tree density, spatial distribution, and stocking. For Sci 62:474–481

    Article  Google Scholar 

  • Persson O (1964) Distance methods: the use of distance measurements in the estimation of seedling density and open space frequency. Studia For Suec 15:1–68

    Google Scholar 

  • Picard N, Kouyaté AM, Dessard H (2005) Tree density estimations using a distance method in Mali savanna. For Sci 51:7–18

    Google Scholar 

  • Platt WJ, Evans GW, Rathbun SL (1988) The population dynamics of a long-lived conifer (Pinus Palustris). Am Nat 131:491–525

    Article  Google Scholar 

  • Pollard JH (1971) On distance estimators of density in randomly distributed forests. Biometrics 27:991–1002

    Article  Google Scholar 

  • Prodan M (1968) Punktstichprobe Für Die Forsteinrichtung [Point Sampling in Forest Inventory]. Forst- und Holzwirt 23:225–226

    Google Scholar 

  • Raftery AE (1999) Bayes factors and bic: comment on “a critique of the bayesian information criterion for model selection.” Soc Met Res 27:411–427

    Article  Google Scholar 

  • Ramezani H, Grafström A, Naghavi H, Fallah A, Shataee S, Soosani J (2016) Evaluation of k-tree distance and fixed-sized plot sampling in zagros forests of western Iran. J Agric Sci Technol 18:155–170

    Google Scholar 

  • Redfern D (1996) Standard functions and constants. The maple handbook. Springer, New York, pp 284–314

    Chapter  Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, Cambridge, p 148

    Book  Google Scholar 

  • Rose ME (1953) The analysis of angular correlation and angular distribution data. Phys Rev 91:610–615

    Article  CAS  Google Scholar 

  • Safari M, Sefidi K, Alijanpour A, Elahian M (2020) Efficiency evaluation of the plotless method methods for estimating the spatial structure of Persian oak (Quercus macranthera) stands in Arasbaran forests. For Res Dev 5:599–612

    Google Scholar 

  • Sarhan AE, Greenberg BG (1962) Contributions to order statistics. Wiley, New York, p 482

    Google Scholar 

  • Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource forest inventory. Wiley, New York, p 416

    Google Scholar 

  • Shanks RE (1954) Plotless sampling trials in appalachian forest types. Ecology 35:237–244

    Article  Google Scholar 

  • Shen G, Wang X, He F (2020) Distance-based methods for estimating density of non-randomly distributed populations. Ecology 101(10):e03143

    Article  PubMed  Google Scholar 

  • Sohrabi H (2018) Adaptive k-tree sample plot for the estimation of stem density: an empirical approach. J For Sci 64:17–24

    Article  Google Scholar 

  • Staupendahl K (2008) The modified six-tree-sample—a suitable method for forest stand assessment. Allg F Jagdztg. IEEE Trans Commun 179:21–33

    Google Scholar 

  • Steinke I, Hennenberg KJ (2006) On the power of plotless density estimators for statistical comparisons of plant populations. Can J Bot 84:421–433

    Article  Google Scholar 

  • Stoyan DP (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61

    Google Scholar 

  • Stoyan D, Stoyan H, Tscheschel A, Mattfeldt T (2001) On the estimation of distance distribution functions for point processes and random sets. Image Anal Stereol 20:65–69

    Article  Google Scholar 

  • Zhu BC, Zeng ZQ, Cheng JL, Beaulieu NC (2017) On the distribution function of the generalized Beckmann random variable and its applications in communications. IEEE Trans Comm 66:2235–2250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Magnussen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Canadian Forest Service.

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu

Appendix

Appendix

The mean (location) and variance of a Norton-Rice distribution (cf (1)) with parameters {mij, aij, bij} at the ith site and jth distance are given in (2) and (3). For the sake of completeness, the expressions for the skewness coefficient and the kurtosis is given next.

The skewness coefficient of a RND can be computed from the three parameters as per (15) with subscripts dropped for clarity.

$$\frac{{\sqrt {\frac{\pi }{2}} b\left( {\pi b^{2} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{3} - 3m\left( {a^{2} + 2b^{2} } \right)L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right) + 3b^{2} L_{\frac{3}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)} \right)}}{{\left( {m\left( {a^{2} + 2b^{2} } \right) - \frac{1}{2}\pi b^{2} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{2} } \right)^{3/2} }}$$
(15)

The kurtosis for a RND is given next.

$$\frac{\begin{gathered} \frac{{\frac{1}{4}( - 3)\pi^{2} b^{4} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{4} - 6\pi b^{4} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)L_{\frac{3}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)}}{{\left( {m\left( {a^{2} + 2b^{2} } \right) - \frac{1}{2}\pi b^{2} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{2} } \right)^{2} }} + \hfill \\ 3\pi b^{2} m\left( {a^{2} + 2b^{2} } \right)L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{2} + m\left( {4a^{2} b^{2} (m + 1) + a^{4} m + 4b^{4} (m + 1)} \right) \hfill \\ \end{gathered} }{{\left( {m\left( {a^{2} + 2b^{2} } \right) - \frac{1}{2}\pi b^{2} L_{\frac{1}{2}}^{m - 1} \left( { - \frac{{a^{2} m}}{{2b^{2} }}} \right)^{2} } \right)^{2} }}$$
(16)

In both (15) and (16) the denominator inside the outermost parentheses is the variance given in (3). Correspondingly, the numerators in (15) and (16) are the third and fourth central moment.

A scaled version of Ripley’s K-function is often used to characterize a spatial point pattern (Illian et al. 2008). The scaled version used here is denoted \(L\left( {\overline{r}_{6,tree - tree} } \right)\) and defined in 17 for a population with N trees a known stem density \(\lambda\), and an average distance from a stem location to the 6th nearest tree location \(\left( {\overline{r}_{6,tree - tree} } \right)\).

$$\hat{L}\left( {\overline{r}_{6,tree - tree} } \right) = \sqrt {\left( {\left( {K\left( {\overline{r}_{6,tree - tree} } \right)/\lambda } \right).wts/\left( {\pi N} \right)} \right)} - \overline{r}_{6,tree - tree}$$
(17)

where \(K\left( {\overline{r}_{6,\,tree - tree} } \right)\) is the length N vector of Ripley’s K-function yielding the number of trees inside a disk with a radius \(\overline{r}_{6,tree - tree}\) centered on the ith stem-location (i = 1, …, N), and wts is the length N vector of edge-corrections (here the ratio between the nominal area of the disk and the area of the disk inside the boundaries of the studied population).

The pair-correlation function \(g\left( {\overline{r}_{6,tree - tree} } \right)\) is also a popular statistic for the inference about spatial point patterns (Illian et al. 2008). Here a discrete version is used with 10-cm wide distance bins. Specifically:

$$\hat{g}\left( {\overline{r}_{6,tree - tree} } \right) = \frac{1}{N}\sum\limits_{i = 1}^{N} {\frac{{\# \left\{ {j:\overline{r}_{6,tree - tree} - 0.05 \le r_{ij} < \overline{r}_{6,tree - tree} + 0.05} \right\}}}{{\lambda \times 2 \times \pi \times \overline{r}_{6,tree - tree} \times 0.10}}}$$
(18)

where rij is the distance from the ith tree to the jth tree \(j_{ \ne i} = 1, \ldots ,N\) in the population. To minimize edge effects, the boundary mirage by Lynch (Ibid) was used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnussen, S. A plotless density estimator with a Norton-Rice distribution for ordered distances. J. For. Res. 32, 2385–2401 (2021). https://doi.org/10.1007/s11676-021-01309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01309-9

Keywords

Navigation