Skip to main content
Log in

Fine-scale activity patterns of large- and medium-sized mammals in a deciduous broadleaf forest in the Qinling Mountains, China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The composition of animal species and interactions among them are widely known to shape ecological communities and fine-scale (e.g., < 1 km) monitoring of animal communities is essential for understanding the relationships among animals and plants. Although the co-existence of large- and medium-sized species has been studied across different scales, research on fine-scale interactions of herbivores in deciduous broadleaf forests is limited. Camera trapping of large- and medium-sized mammals was carried out over a 1 year period within a 25 ha deciduous broadleaf forest dynamics plot in the Qinling Mountains, China. Fourteen species of large- and medium-sized mammals, including six carnivores, six ungulates, one primate and one rodent species were found. Kernel density estimations were used to analyse the diel or 24 h activity patterns of all species with more than 40 independent detections and general linear models were developed to explore the spatial relationships among the species. The combination of overlapping diel activity patterns and spatial associations showed obvious niche separation among six species: giant panda (Ailuropoda melanoleuca David), takin (Budorcas taxicolor Hodgson), Reeves’s muntjac (Muntiacus reevesi Ogilby), tufted deer (Elaphodus cephalophus Milne-Edwards), Chinese serow (Capricornis milneedwardsii David) and wild boar (Sus scrofa Linnaeus). Long-term fine-scale monitoring is useful for providing information about the co-existence of species and their interactions. The results demonstrate the importance for fine-scale monitoring of animals and plants for improving understanding of species interactions and community dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahumada JA, Silva CEF, Gajapersad K, Hallam C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D, Spironello WR, Winarni N, Andelman SJ (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos T R Soc B 366:2703–2711

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, Du X, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BCH, He F, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SKY, Lutz JA, Ma KP, Maddalena DM, Makana JR, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-ngernyuang K, Sukumar R, Sun I, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrska T, Wang XH, Wang XG, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biol 21:528–549

    Article  Google Scholar 

  • Bakker ES, Reiffers RC, Olff H, Gleichman JM (2005) Experimental manipulation of predation risk and food quality: effect on grazing behaviour in a central-place foraging herbivore. Oecologia 146(1):157–167

    Article  PubMed  CAS  Google Scholar 

  • Barnes ME (2001) Seed predation, germination and seedling establishment of Acacia erioloba in northern Botswana. J Arid Environ 49:541–554

    Article  Google Scholar 

  • Bartoń K (2019) MuMIn: multi-model inference. R package version 1(43):6

    Google Scholar 

  • Beguin J, Tremblay JP, Thiffault N, Pothier D, Cote SD (2016) Management of forest regeneration in boreal and temperate deer-forest systems: challenges, guidelines and research gaps. Ecosphere 7(10):e01488

    Article  Google Scholar 

  • Bowkett AE, Rovero F, Marshall AR (2008) The use of camera-trap data to model habitat use by antelope species in the Udzungwa Mountain forests, Tanzania. Afr J Ecol 46:479–487

    Article  Google Scholar 

  • Bu H, Wang F, McShea WJ, Lu Z, Wang D, Li S (2016) Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of southwest China. PLoS ONE 11(10):e0164271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretical approach. Springer, New York, pp 70–72

    Google Scholar 

  • Chen Y, Xiao Z, Li M, Wang X, He C, He G, Li H, Shi S, Xiang Z (2016) Preliminary survey for the biodiversity of mammal and bird using camera traps in the west slope of mid-section Mt. Gaoligong Acta Theriol Sin 36(3):302–312

    Google Scholar 

  • Chen Y, Xiao Z, Zhang L, Wang X, Li M, Xiang Z (2019) Activity rhythms of coexisting red serow and Chinese serow at Mt Gaoligong as identified by camera traps. Animals 9:1071

    Article  PubMed Central  Google Scholar 

  • Croose E, Bled F, Fowler NL Jr, DEB, (2019) American marten and fisher do not segregate in space and time during winter in a mixed-forest system. Ecol Evol 9(8):4906–4916

    Article  PubMed  PubMed Central  Google Scholar 

  • Desta F, Colbert JJ, Rentch JS, Gottschalk KW (2004) Aspect induced differences in vegetation, soil and microclimatic characteristics of an appalachian Watershed. Castanea 69(2):92–108

    Article  Google Scholar 

  • Duan L (2014) Study on activity and habitat use of giant panda and its sympatric species in Wanglang Nature Reserve. MSc Thesis. Beijing Forestry University

  • Farnsworth KD, Focardi S, Beecham JA (2002) Grassland-herbivore interactions: How do grazers coexist? Am Nat 159(1):24–39

    Article  PubMed  CAS  Google Scholar 

  • Gantchoff MG, Belant JL (2016) Patterns of coexistence between two mesocarnivores in northern Patagonia in the presence of invasive hares and anthropogenic disturbance. Austral Ecol 41:97–105

    Article  Google Scholar 

  • Gomez JM (2005) Long-term effects of ungulates on performance, abundance and spatial distribution of two montane herbs. Ecol Monogr 75(2):231–258

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  PubMed  CAS  Google Scholar 

  • Haidir IA, Macdonald DW, Linkie M (2018) Assessing the spatiotemporal interactions of mesopredators in Sumatra’s tropical rainforest. PLoS ONE 13(9):e0202876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu J (1987) Daily activity rhythm of giant panda. Acta Theriol Sin 7(4):241–245

    Google Scholar 

  • Jia X, Liu X, Yang X, Wu P, Songer M, Cai Q, He X, Zhu Y (2014) Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data. Biodiversity Sci 22(6):737–745

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi, pp 39–43

    Google Scholar 

  • Krohner JM, Ausband DE (2019) Associations between sympatric apex predators across a diverse landscape. Mammal Res 64:203–212

    Article  Google Scholar 

  • Levin SA (1970) Community equilibria and stability and an extension of the competitive exclusion principle. Am Nat 104(939):413–423

    Article  Google Scholar 

  • Li H, Zhang Z (2001) Relationship between animals and plant regeneration by seed II. Seed predation, dispersal and burial by animals and relationship between animals and seedling establishment. Biodiversity Sci 9:2537

    Google Scholar 

  • Li S, Zhang X, Chen P, Wang J, Xiang D, Dong W, Zhang X, He B, Sun R, Zhao N, Wang D (2014a) The community structure and evelvational patterns of forest ungulates at the southern slope of the Qinling Mountains. China Chin J Zool 49(5):633–643

    Google Scholar 

  • Li X, Piao Z, Wu Y, Zhou H, Zhang P, Liu B, Huang X, Xiao Z (2014b) Camera trap survey of mammals and birds in Changbaishan forest dynamics plot. Northeast China Biodiversity Sci 22(6):810–812

    Article  Google Scholar 

  • Liu X, Wu P, Shao X, Songer M, Cai Q, He X, Zhu Y (2017) Diversity and activity patterns of sympatric animals among four types of forest habitat in Guanyinshan Nature Reserve in the Qinling Mountains. China Environ Sci Pollut R 24(19):16465–16477

    Article  CAS  Google Scholar 

  • Michalski LJ, Norris D, de Oliveira TG, Michalski F (2015) Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10(5):e0126114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Northrup JM, Gerber BD (2018) A comment on priors for Bayesian occupancy models. PLoS ONE 13(2):e0192819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139

    Article  Google Scholar 

  • Pan W, Lv Z, Zhu X, Wang D, Wang H, Long Y, Fu D, Zhou X (2001) A chance for lasting survival: ecology, behavior and conservation of the giant panda. Peking University Press, Beijing, pp 150–151

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2019) Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–143

  • Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat 14(3):322–337

    Article  Google Scholar 

  • Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods Ecol Evol 5:1170–1179

    Article  Google Scholar 

  • Santos F, Carbone C, Wearn OR, Rowcliffe JM, Espinosa S, Lima MGM, Ahumada JA, Goncalves ALS, Trevelin LC, Alvarez-Loayza P, Spironello WR, Jansen PA, Juen L, Peres CA (2019) Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14(3):e0213671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaller GB, Hu J, Pan W, Zhu J (1985) The giant pandas of wolong. University of Chicago Press, Chicago

    Google Scholar 

  • Schmid F, Schmidt A (2006) Nonparametric estimation of the coefficient of overlapping-theory and empirical application. Comput Stat Data An 50(6):1583–1596

    Article  Google Scholar 

  • Schneider FD, Brose U, Rall BC, Guill C (2016) Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7:12718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Xie F, Zhou Q, Shu X, Zhang K, Dang C, Feng S, Zhang Q, Dang H (2019) Effects of topography on tree community structure in a deciduous broad-leaved forest in north-central China. Forests 10:53

    Article  Google Scholar 

  • Si X, Ding P (2014) Camera trap survey on population dynamics of mammals and birds in Gutianshan Forest Dynamics Plot, eastern China. Biodiversity Sci 22(6):819–822

    Article  Google Scholar 

  • Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator-prey system. Nature 425:288–290

    Article  PubMed  CAS  Google Scholar 

  • Soberon J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7(3):480–488

    Article  Google Scholar 

  • Tobler MW, Carrillo-Percastegui SE, Pitman RL, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178

    Article  Google Scholar 

  • Wang C, Liu X, Wu P, Cai Q, Shao X, Zhu Y, Melissa S (2015) Research on behavior and abundance of wild boar (Sus scrofa) via infrared camera in Guanyinshan Nature Reserve in Qinling Mountains. China Acta Theriol Sin 35(2):147–156

    Google Scholar 

  • Wirsing AJ, Heithaus MR, Dill LM (2007) Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim Behav 74:93–101

    Article  Google Scholar 

  • Xiao Z (2014) An introduction to wildlife camera trapping monitoring from Chinese Forest Biodiversity Monitoring Network (CForBio). Biodiversity Sci 22(6):808–809

    Article  Google Scholar 

  • Xiao Z, Li X, Wang X, Zhou Q, Quan R, Shen X, Li S (2014) Developing camera-trapping protocols for wildlife monitoring in Chinese forests. Biodiversity Sci 22(6):704–711

    Article  Google Scholar 

  • Xie W, Yang X, Yu J, Li J, Tao S, Lu Z, Wang X, Xiao Z (2014) A survey of mammals and birds using camera traps in Badagongshan Forest Dynamics Plot. Central China Biodiversity Sci 22(6):816–818

    Article  Google Scholar 

  • Xie F, Zhou Q, Shi H, Shu X, Zhang K, Li T, Feng S, Zhang Q, Dang H (2019) Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China. Biodiversity Sci 27(4):439–448

    Article  Google Scholar 

  • Yang F, Hu S, Wang J, Guo K, Jiang G (2018) Spatial interaction among free-ranging ungulates by season at the microhabitat scale. Chinese Journal of Wildlife 39(2):224–230

    Google Scholar 

  • Yue M, Dang G, Gu T (2000) Vertical zone spectrum of vegetation in Foping National Reserve and the comparison with the adjacent areas. J Wuhan Bot Res 18(5):375–382

    Google Scholar 

  • Zhang M, Cao L, Quan R, Xiao Z, Yang X, Zhang W, Wang X, Deng X (2014) Camera trap survey of animals in Xishuangbanna Forest Dynamics Plot, Yunnan. Biodiversity Sci 22:830–832

    Article  Google Scholar 

  • Zhang Y, Liu X, Lv Z, Zhao X, Yang X, Jia X, Sun W, He X, He B, Cai Q, Zhu Y (2019) Animal diversity responding to different forest restoration schemes in the Qinling Mountain, China. Ecol Eng 136:23–29

    Article  Google Scholar 

  • Zhou L (2017) The pandas of Qinling: the 4th survey report on giant panda in Shaanxi province. Shaanxi Science and Technology Press, Xi’an, pp 64–81

    Google Scholar 

Download references

Acknowledgements

We appreciate Foping Nature Reserve administration for support for the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Natural Science Foundation of China project (No 41671183).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, X., Liu, X. et al. Fine-scale activity patterns of large- and medium-sized mammals in a deciduous broadleaf forest in the Qinling Mountains, China. J. For. Res. 32, 2709–2717 (2021). https://doi.org/10.1007/s11676-021-01291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01291-2

Keywords

Navigation