Skip to main content

Advertisement

Log in

Influence of microhabitat and landscape-scale factors on the richness and occupancy of small mammals in the northern Western Ghats: A multi-species occupancy modeling approach

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Human-dominated ecosystems are characterized by three main processes, viz., habitat degradation, habitat loss and habitat fragmentation, these posing a great threat to biodiversity. However, the relationships between these processes are not clearly understood. Moreover, habitat loss and habitat fragmentation occur at landscape-scale and their effects depend on the spatial scale. We trapped small mammals in a human-dominated area in the northern Western Ghats, India, at 23 sites in three habitats, capturing 479 individuals of 17 species. We adopted the multi-species occupancy model (MSOM) approach within a Bayesian framework to assess species site occupancy using microhabitat-scale and landscape-scale variables measured at five spatial scales. We found that species richness had a hump-shaped relationship with landscape complexity, and it can be best explained at a spatial scale of 300 m. The findings suggest that both microhabitat-scale and landscape-scale variables influence small mammal occupancy. Overall, shrub density had a positive effect on species occurrence with high certainty, which could be related to the protection provided by shrubs from predators and harsh weather conditions. Shrub density was largely influenced small mammal richness and occupancy and thus should be managed appropriately for their conservation. Considering the negative impact of landscape complexity on endemic rodents, especially on the Critically Endangered Millardia kondana, further fragmentation of grasslands and forest habitats and their conversion into unsuitable habitats in the area should be minimized. All high-elevation grasslands important for M. kondana should be strictly protected and managed. We recommend adoption of the MSOM approach in similar studies, as it allows estimation of occupancy even for species with low detectability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, V.C., 2000. Taxonomic Studies on Indian Muridae and Hystricidae (Mammalia: Rodentia). Records of the Zoological Survey of India, Occasional Paper No. 180. Director, Zoological Survey of India, Calcutta, pp. 108–115.

    Google Scholar 

  • Bajaru, S.B., 2015. Distribution and Assessment of the Population Status of Critically Endangered Kondana Soft-Furred Rat, With a Special Emphasis on Implementation of the Conservation Management Plan at Sinhgad. Report Submitted to Critical Ecosystem Partnership Fund (CEPF) - Ashoka Trust for Research in Ecology and Environment (ATREE) Western Ghats Small Grant Programme.

    Google Scholar 

  • Barrett, G.W., Peles, J.D., Harper, S.J., 1995. Reflections on the use of experimental landscapes in mammalian ecology. In: Lidicker, W.Z. (Ed.), Landscape Approaches in Mammalian Ecology and Conservation. University of Minnesota Press, Minneapolis, Minnesota, pp. 157–174.

    Google Scholar 

  • Bowers, M.A., Gregario, K., Brame, C.J., Matter, S.F., Dooley, J.L., 1996. Use of pace and habitats by meadow voles at the home range, patch, and landscape-scales. Oecologia 105, 107–115.

    Article  PubMed  Google Scholar 

  • Broms, K.M., Hooten, M.B., Fitzpatrick, R.M., 2016. Model selection and assessment for multi-species occupancy models. Ecology 97 (7), 1759–1770.

    Article  PubMed  Google Scholar 

  • Census India, Retrieved on 15 July 2019 2011. District Census Handbook- Pune. Directorate of census Operations Maharashtra.

    Google Scholar 

  • Chandrasekar-Rao, A., Sunquist, M.E., 1996. Ecology of small mammals in tropical forest habitats of southern India. J. Trop. Ecol. 12, 561–571.

    Article  Google Scholar 

  • Collins, R.J., Barrett, G.W., 1997. Effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) population dynamics in experimental landscape patches. Landsc. Ecol. 12, 63–76.

    Article  Google Scholar 

  • Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs - high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199, 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Cushman, S.A., McGarigal, K., 2004. Patterns in the species- environment relationship depend on both scale and choice of response variables. Oikos 105, 117–124.

    Article  Google Scholar 

  • Denwood, M.J., 2016. Runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25.

    Article  Google Scholar 

  • Dorazio, R., Gotelli, N., Ellison, A., 2011. Modern methods of estimating biodiversity from presence-absence surveys. In: Grillo, O., Venora, G. (Eds.), Biodiversity Loss in a Changing Planet. IntechOpen Ltd., London, pp. 277–302.

    Google Scholar 

  • Ellis, E.C., Ramankutty, N., 2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447.

    Article  Google Scholar 

  • Enquist, B.J. Jordan, M.A., Brown, J.H., 1995. Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent molluscs. Evol. Ecol. 9, 586–604.

    Article  Google Scholar 

  • Fahrig, L., Baudry, J., Brotons, L.L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C., Siriwardena, G.M., Martin, J.L., 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14,101–112.

    Article  PubMed  Google Scholar 

  • Foley, J.A., DeFries, R., Asner, G.P., et al., 2005. Global consequences of land use. Science 309, 570–574.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, R., Bain, G., Hamer, R., Jones, M.E., Johnson, C.N., 2018. Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Lands. Ecol. 33, 1837–1849.

    Article  Google Scholar 

  • Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/hierarchical Models. Cambridge University Press, New York, pp. 648.

    Book  Google Scholar 

  • Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 4, 457–472.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis. Chapman & Hall, London, pp. 675.

    Google Scholar 

  • Gomez, M.D., Goijman, A.P., Coda, J.A., Serafini, V.N., Priotto, J.W., 2018. Small mammal responses to farming practices in central Argentinian agroecosystems: The use of hierarchical occupancy models. Austral Ecol. 43, 828–838.

    Article  Google Scholar 

  • Gupta, S., Mondal, K., Sankar, K., Qureshi, Q., 2013. Diversity and abundance of rodents in the semi-arid landscape of sariska tiger reserve, Western India. J. Bombay Nat. Hist. Soc. 110, 122–128.

    Google Scholar 

  • Harper, S.J., Bollinger, E.K., Barrett, G.W., 1993. The effects of habitat patch shape on population dynamics of meadow voles (Microtus pennsylvanicus). J. Mammal. 74, 1045–1055.

    Article  Google Scholar 

  • Hesselbarth, M.H., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J., 2019. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657, https://doi.org/10.1111/ecog.04617.

    Article  Google Scholar 

  • Hooten, M.B., Hobbs, N.T., 2015. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 85, 3–28.

    Article  Google Scholar 

  • Ieno, E.N., Zuur, A.F., 2015. A Beginner’s Guide to Data Exploration and Visualisation with R. Highland Statistics, Newburgh.

    Google Scholar 

  • Jackson, H.B., Fahrig, L., 2015. Are ecologists conducting research at the optimal scale? Glob. Ecol. Biogeogr. 24, 52–63.

    Article  Google Scholar 

  • Jha, C.S., Dutt, C.B.S., Bawa, K.S., 2000. Deforestation and land use changes in Western Ghats, India. Curr. Sci. 79, 231–238.

    Google Scholar 

  • Jorgensen, E.E., 2004. Small mammal use of microhabitat reviewed. J. Mammal. 85, 531–539.

    Article  Google Scholar 

  • Kalies, E.B., Dickson, B.G., Chambers, C.L., Covington, W.W., 2012. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA. Ecol. Appl. 22, 204–217.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, K.F., Swihart, R.K., 2014. Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9 (10), e111436.

    Article  CAS  Google Scholar 

  • Kelt, D.A., Meserve, P.L., Lang, B.K., 1994. Quantitative habitat associations of small mammals in a temperate rainforest in southern Chile: empirical patterns and the importance of ecological scale. J. Mammal. 75, 890–904.

    Article  Google Scholar 

  • Kéry, M., Royle, J.A., 2015. Applied Hierarchical Modeling in Ecology, Analysis of Distribution, Abundance and Species Richness in R and BUGS. Academic Press & Elsevier, pp. 808.

    Google Scholar 

  • Lindenmayer, D.B., Fischer, J., 2007. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132.

    Article  PubMed  Google Scholar 

  • Lindsay, K.E., Kirk, DA, Bergin, T.M., Louis, B., Sifneos, J.C., Smith, J., Sifneos, J.C., 2013. Farmland heterogeneity benefits birds in American mid-west watersheds. Am. Midl. Nat. 170, 121–143.

    Article  Google Scholar 

  • Mackenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 248–255.

    Google Scholar 

  • Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J., 1997. Agricultural intensification and ecosystem properties. Science 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Meena, V., Master’s thesis 1997. Community Ecology of Small Mammals in Mudumalai Wildlife Sanctuary, South India. Pondicherry University, Pondicherry, India.

    Google Scholar 

  • Miguet, P., Jackson, H.B., Jackson, N.D., Martin, A.E., Fahrig, L., 2016. What determines the spatial extent of landscape effects on species? Lands. Ecol. 31, 1–18.

    Article  Google Scholar 

  • Mitchell, M.G.E., Bennett, E.M., Gonzalez, A., 2014. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agric. Ecosyst. Environ. 192, 144–151.

    Article  Google Scholar 

  • Mohammadi, S., 2010. Microhabitat selection by small mammals. Adv. Biol. Res. 4

    Google Scholar 

  • Molur, S., Singh, M., 2009. Non-volant small mammals of the Western Ghats of Coorg District, southern India. JoTT 1, 589–608.

    Google Scholar 

  • Moore, J.E., Swihart, R.K., 2005. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wildl. Manag. 69, 933–949.

    Article  Google Scholar 

  • Mortelliti, A., 2013. Targeting habitat management in fragmented landscapes: a case study with forest vertebrates. Biodivers. Conserv. 22, 187–207.

    Article  Google Scholar 

  • Mortelliti, A., Amori, G., Boitani, L., 2010. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163, 535–547.

    Article  PubMed  Google Scholar 

  • Mudappa, D., Kumar, A., Chellam, R., 2001. Abundance and habitat selection of the Malabar spiny dormouse in the rainforests of the southern Western Ghats, India. Curr. Sci. India 80, 424–427.

    Google Scholar 

  • Naxara, L., Pinotti, B.T., Pardini, R., 2009. Seasonal microhabitat selection by terrestrial rodents in an old-growth Atlantic Forest. J. Mammal. 90, 404–415.

    Article  Google Scholar 

  • Newton, I., 2006. Links between abundance and distribution of birds. Ecography 20, 137–145.

    Article  Google Scholar 

  • Outhwaite, C.L., Chandler, R.E., Powney, G.D., Collen, B., Gregory, R.D., Isaac, J.B.N., 2018. Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data. Ecol. Indic. 93, 333–343.

    Article  Google Scholar 

  • Prabhakar, A., Ph.D. Thesis 1998. Small Mammals of Fragmented Rainforests of the Western Ghats. Bharaliyar University, India.

    Google Scholar 

  • Pradhan, M.S., Molur, S., Nameer, P.O., Version 2018.1. <www.iucnredlist.org>. Accessed on 15 June 2018 2008. Millardia kondana. The IUCN Red List of Threatened Species.

    Google Scholar 

  • Prakash, I., Singh, H., 2000. Small mammal diversity and ecology of small mammals in the aravalli mountain ecosystem in Southern Rajasthan. Proc. Natl. Acad. Sci. India 70 (B), 211–227.

    Google Scholar 

  • Prakash, I., Singh, H., 2001. Composition and species diversity of small mammals in hilly tracts of Southeastern Rajasthan. Trop. Ecol. 42, 25–33.

    Google Scholar 

  • Prakash, I., Singh, P., 2005. Ecology of Small Mammals of Desert and Montane Ecosystems. Scientific Publishers, Jodhpur, India, pp. 17–80.

    Google Scholar 

  • Prakash, I., Singh, P., Saravanan, A., 1995. Small mammals ofthe Abu hill, Arvalli ranges, Rajasthan, India. A comprehensive taxonomical and ecological study. Zoology 5, 55–64.

    Google Scholar 

  • QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project http://qgis.osgeo.org.

    Google Scholar 

  • R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org.

    Google Scholar 

  • Ramchandran, V., Ph.D. Thesis 2013. Effect of Habitat Alteration on Canopy Bird and Small Mammal Communities in the Wet Evergreen Forests ofthe Western Ghats. Manipal University, India.

    Google Scholar 

  • Reddy, C.S., Dutta, K., Jha, C.S., 2013. Analysing the gross and net deforestation rates in India. Curr. Sci. 105, 1492–1500.

    Google Scholar 

  • Rickart, E.A., Balete, D.S., Rowe, R.J., Heaney, L.R., 2011. Mammals ofthe northern Philippines: tolerance for habitat disturbance and resistance to invasive species in an endemic fauna. Divers. Distrib. 17, 530–541.

    Article  Google Scholar 

  • Ricklefs, R.E., 1987. Community diversity: relative roles of local and regional processes. Science 235, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, M.L., 1989. Habitat selection, community organization and small mammal studies. In: Morris, D.W., Abramsky, Z., Fox, B.J., Willig, M.R. (Eds.), Patterns in the Structure of Mammalian Communities. Texas Tech University Press, Lubbock, pp. 5–21.

    Google Scholar 

  • Royle, J.A., Dorazio, R.M., 2008. Hierarchical Modeling and Inference in Ecology. Academic Press, London, U.K, pp. 464.

    Google Scholar 

  • Schweiger, E.W., Diffendorfer, J.E., Pierotti, R., Holt, R.D., 1999. The relative importance of small-scale and landscape-level heterogeneity in structuring small mammal distributions. In: Barrett, G.W., Peles, J.D. (Eds.), Landscape Ecology of Small Mammals. Spinger-Verlag, New York, pp. 175–207.

    Chapter  Google Scholar 

  • Serafini, V.N., Priotto, J.W., Gomez, M.D., 2019. Effects of agroecosystem landscape complexity on small mammals: a multi-species approach at different spatial scales. Lands. Ecol. 34, 1117–1129.

    Article  Google Scholar 

  • Seto, K.C., Guneralp, B., Hutyra, L.R., 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109, 16083–16088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker, K., 2001. The role of competition and habitat in structuring small mammal communities in a tropical montane ecosystem in southern India. J. Zool. 253, 15–24.

    Article  Google Scholar 

  • Shanker, K., Sukumar, R., 1998. Community ecology and demography of small mammal communities in insular montane forests in southern India. Oecologia (Berl.) 116, 243–251.

    Article  Google Scholar 

  • Shenoy, K., Madhusudan, P.S., 2006. Small mammal communities in a rapidly developing southern Indian city. Zoos’ Print. J. 21, 2152–2159.

    Article  Google Scholar 

  • Sikes, R.S., Gannon, W.L., the Animal Care and Use Committee ofthe American Society of Mammalogists, 2011. Guidelines ofthe American society of mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253.

    Article  Google Scholar 

  • Simonetti, J.A., 1989. Microhabitat use by small mammals in central Chile. Oikos 56, 309–318.

    Article  Google Scholar 

  • Smith, A.C., Fahrig, L., Francis, CM., 2011. Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34, 103–113.

    Article  Google Scholar 

  • Stephens, R.B., Anderson, E.M., 2014. Habitat associations and assemblages of small mammals in natural plant communities of Wisconsin. J. Mammal. 95, 404–420.

    Article  Google Scholar 

  • Suarez, O.V., Bonaventura, S.M., 2001. Habitat use and diet in sympatric species of rodents ofthe low Parana Delta, Argentina. Mammalia 65, 167–176.

    Google Scholar 

  • Swihart, R.K., Slade, N.A., 1990. Long-term dynamics of and early successional small mammal community. Am. Midl. Nat. 123, 372–382.

    Article  Google Scholar 

  • Thornton, D., Branch, L., Sunquist, M.E., 2011. The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Lands Ecol. 26, 7–18.

    Article  Google Scholar 

  • Urban, N.A., Swihart, R.K., 2009. Multiscale perspectives on occupancy of meadow jumping mice in landscapes dominated by agriculture. J. Mammal. 90, 1431–1439.

    Article  Google Scholar 

  • Venkataraman, M., Shanker, K., Sukumar, R., 2005. Small mammal communities of tropical forest habitats in mudumalai wildlife sanctuary, southern India. Mammalia 69, 349–358.

    Article  Google Scholar 

  • Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human domination of earth’s ecosystems. Science 277, 494–499.

    Article  CAS  Google Scholar 

  • Watanabe, S., 2010. Asymptotic equivalence of Bayes cross-validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.

    Google Scholar 

  • Weibull, A., Östman, Ö., Granqvist, Å., 2003. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355.

    Article  Google Scholar 

  • Wiens, J.A., Stenseth, N.C., Van Horne, B., Ims, R.A., 1993. Ecological mechanisms and landscape ecology. Oikos 66, 369–380.

    Article  Google Scholar 

  • Wolff, J.O., Schauber, E.M., Edge, W.O., 1997. Effects of habitat fragmentation on the social dynamics ofthe gray-tailed vole. Conser. Biol. 11, 945–956.

    Article  Google Scholar 

  • Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36.

    Article  Google Scholar 

  • Zipkin, E.F., Royle, A., Dawson, D.K., Bates, S., 2010. Multi-species occurrence models to evaluate the effects of conservation and management actions. Biol. Conser. 143, 479–484.

    Article  Google Scholar 

  • Zuur, A.F., 2012. A Beginner’s Guide to Generalized Additive Models with R. Highland Statistics Ltd, Newburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer B. Bajaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaru, S.B., Kulavmode, A.R. & Manakadan, R. Influence of microhabitat and landscape-scale factors on the richness and occupancy of small mammals in the northern Western Ghats: A multi-species occupancy modeling approach. Mamm Biol 99, 88–96 (2019). https://doi.org/10.1016/j.mambio.2019.10.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2019.10.003

Keywords

Navigation