Skip to main content
Log in

Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems. However, equations for dry deciduous woodland ecosystems, an important carbon sink in the lowland areas of Ethiopia have not as yet been developed. This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass (AGB) of dominant woody species based on data from destructive sampling for Combretum collinum, Combretum molle, Combretum harotomannianum, Terminalia laxiflora and mixed-species. Diameter at breast height ranged from 5 to 30 cm. Two empirical equations were developed using DBH (Eq. 1) and height (Eq. 2). Equation 2 gave better AGB estimations than Eq. 1. The inclusion of both DBH and H were the best estimate biometric variables for AGB. Further, the equations were evaluated and compared with common generic allometric equations. The result showed that our allometric equations are appropriate for estimating AGB. The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson F (1970) Ecological studies in a Scanian woodland and meadow area, southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot Not 123:8–51

    Google Scholar 

  • Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. J For Res 2:49–53

    Google Scholar 

  • Basuki TM, Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257:1684–1694

    Article  Google Scholar 

  • Beauchamp JJ, Olson JS (1973) Corrections for bias in regression estimates after logarithmic transformation. Ecology 54:1403–1407

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35(4):881–902

    Google Scholar 

  • Chamshama AO, Mugasha AG, Zahabu E (2004) Stand biomass and volume estimation for miombo woodlands at Kitulangalo, Morogoro, Tanzania. South Afr For J 200:59–69

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190

    Article  Google Scholar 

  • Cheng M, An SS (2015) Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. J Arid Land 7:216–223

    Article  Google Scholar 

  • Chidumayo EN (2013) Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia–Julbernardia (miombo) woodland in central Zambia. Environ Conserv 41(1):54–63

    Article  Google Scholar 

  • Cleemput S, Muys B, Kleinn C, Janssens MJJ (2004) Biomass estimation techniques for enclosures in a semi-arid area: a case study in Northern Ethiopia. Rural poverty reduction through research for development and transformation, Berlin, 5–7 October 2004

  • Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G (2010) Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manag 260:1873–1885

    Article  Google Scholar 

  • Enawgaw C, Kassahun R, Marie A (2006) Report on the assessment of Alatish park in Amhara national regional state. Wildlife Development and Conservation Department, Addis Ababa

    Google Scholar 

  • FAO (2010) Global forest resources assessment main report. Food and Agriculture Organization of the United Nations, Rome. FAO Forestry Paper 163. ISBN 978-92-5-106654-6

  • FAO (2015) Global forest resource assessment 2015. How are the world’s forests changing?. Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-108821-0

    Google Scholar 

  • Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag 305:29–37

    Article  Google Scholar 

  • Feyisa K, Beyene S, Megersa B, Said MY, de Leeuw J, Angassa A (2016) Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands. Agrofor Syst 92:1–23

    Google Scholar 

  • George E, Marschner H (1996) Nutrient and water uptake by roots of forest trees. Z Pflanzenernähr Bodenkult 159:11–12

    Article  CAS  Google Scholar 

  • Giday K, Eshete G, Barklund P, Aertsen W, Muys B (2013) Wood biomass functions for Acacia abyssinica trees and shrubs and implications for provision of ecosystem services in a community managed exclosure in Tigray, Ethiopia. J Arid Environ 94:80–86

    Article  Google Scholar 

  • Glazier DS (2013) Log-transformation is useful for examining proportional relationships in allometric scaling. J Theor Biol 334:200–203

    Article  PubMed  Google Scholar 

  • Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29–51

    Article  Google Scholar 

  • Grundy IM (1995) Wood biomass estimation in dry miombo woodland in Zimbabwe. For Ecol Manag 72:109–117

    Article  Google Scholar 

  • Hailesellassie M (2010) Global forest resources 2010 for Ethiopia. Country report. Food and Agriculture Organization of the United Nations, Rome

  • Hailu Z (2002) Ecological impact evaluation of Eucalyptus plantations in comparison with agricultural and grazing land-use types in the Highlands of Ethiopia. Vienna University of Agricultural Sciences, Vienna

    Google Scholar 

  • Hasen-Yusuf M, Treydte AC, Abule E, Sauerborn J (2013) Predicting aboveground biomass of woody encroacher species in semi-arid rangelands, Ethiopia. J Arid Environ 96:64–74

    Article  Google Scholar 

  • Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag 260:1375–1388

    Article  Google Scholar 

  • Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fenn 45(3B):477–569

    Article  Google Scholar 

  • Ilyas S (2013) Allometric equation and carbon sequestration of Acacia mangium Willd. in coal mining reclamation areas. Civ Environ Res 3:8–16

    Google Scholar 

  • Kerkhoff AJ, Enquist BJ (2009) Multiplicative by nature why logarithmic transformation is necessary in allometry. J Theor Biol 257:519–521

    Article  Google Scholar 

  • Ketterings QM, Coe R, Mv Noordwijk, Ambagau Y, Palm CA (2001) Reducing uncertainity in the use of Allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209

    Article  Google Scholar 

  • Köhl M, Lasco RD, Cifuentes M, Örjan Jonsson, Korhonen KT, Mundhenk P, José Návar, Stinson G (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For Ecol Manag 352:21–34

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RT, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  CAS  PubMed  Google Scholar 

  • Lai JS, Yang B, Lin DM, Kerkhoff AJ, Ma KP (2013) The allometry of coarse root biomass: log transformed linear regression or nonlinear regression? PLoS ONE 8(10):e77007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litton CM, Kauffman JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plant in hawail. Biotropica 40(3):313–320

    Article  Google Scholar 

  • Lugo AE, Silver WL, Colón S (2004) Biomass and nutrient dynamics of restored neotropical forests. Water Air Soil Pollut Focus 4:731–746

    Article  CAS  Google Scholar 

  • Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2011) Minimizing bias in biomass allometry model selection and log-transformation of data. Biotropica 2(2):1–5

    Google Scholar 

  • Mascaro O, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2014) Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol J Lin Soc 111:230–233

    Article  Google Scholar 

  • Mate R, Johansson T, Sitoe A (2014) Biomass equations for tropical forest tree species in Mozambique. Forests 5:535–556

    Article  Google Scholar 

  • Mate R, Johansson T, Sitoe A (2015) Stem volume equations for valuable timber species in Mozambique. J Sustain For 34(8):787–806

    Article  Google Scholar 

  • Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ (2013) Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manag 310:87–101

    Article  Google Scholar 

  • Negash M, Starr M, Kanninen M, Berhe L (2013) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst 87:953–966

    Article  Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, Souza SGAd, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag 117:149–167

    Article  Google Scholar 

  • Neyman J, Scott EL (1960) Correction for bias introduced by a transformation of variables. Ann Math Stat 31(3):643–655

    Article  Google Scholar 

  • Ngomanda A, Engone Obiang NL, Lebamba J, Moundounga Mavouroulou Q, Gomat H, Mankou GS, Loumeto J, Midoko Iponga D, Kossi Ditsouga F, Zinga Koumba R, Botsika Bobé KH, Mikala Okouyi C, Nyangadouma R, Lépengué N, Mbatchi B, Picard N (2014) Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? For Ecol Manag 312:1–9

    Article  Google Scholar 

  • Okello BD, O’Connor TG, Young TP (2001) Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. For Ecol Manag 142:143–153

    Article  Google Scholar 

  • Packard GC (2013) Is logarithmic transformation necessary in allometry? Biol J Lin Soc 109:476–486

    Article  Google Scholar 

  • Packard GC, Boardman TJ (2008) Model selection and logarithmic transformation in allometric analysis. Physiol Biochem Zool 81(4):496–507

    Article  PubMed  Google Scholar 

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4):573–593

    Google Scholar 

  • Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manag 237:583–593

    Article  Google Scholar 

  • Přemyslovská E, Šlezingerová J, Rybníček M, Gryc V, Vavrčík H, Praus L (2007) Basic density of wood in different forest type. In: Střelcová K, Škvarenina J, Blaženec M (eds) Bioclimatology and natural hazards. International scientific conference, Poľana nad Detvou, Slovakia, September 17–20, 2007. ISBN: 97880-228-17-60-8

  • Pukkala T, Pohjonen V (1989) Forest inventory and management planning in the fuelwood plantations of Ethiopia. University of Joensuu, Joensuu

    Google Scholar 

  • Ravindranath NH, Somashekhar BS, Gadgil M (1997) Carbon flow in Indian forests. Ministry of Environment and Forest, Dehradun

    Google Scholar 

  • Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ (2015) Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest? Ecosphere 6(3):1–27

    Article  Google Scholar 

  • Rutishauser E, Noor’an F, Laumonier Y, Halperin J, Rufi’ie, Hergoualc’h K, Verchot L (2013) Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For Ecol Manag 307:219–225

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three contenents. PNAS (Proc Natl Acad Sci USA). https://doi.org/10.1073/pnas.1019576108

    Article  Google Scholar 

  • Salis SM, Assis MA, PcP Mattos, Piao ACS (2006) Estimating the aboveground biomass and wood volume of savanna woodlands in Brazils Pantanal wetlands based on allometric correlations. For Ecol Manag 228:61–68

    Article  Google Scholar 

  • Santantonio D, Hermann RK, Overton WS (1997) Root biomass studies in forest ecosystems. Pedobiologia Bd 17:1–31

    Google Scholar 

  • Slik JWF (2006) Estimating species-specific wood density from the genus average in Indonesian trees. J Trop Ecol 22:481–482

    Article  Google Scholar 

  • Smith RJ (1993) Logarithmic transformation bias in allometry. Am J Phys Anthropol 90:215–228

    Article  Google Scholar 

  • Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64:209–210

    Article  Google Scholar 

  • Vieilledent G, Vaudry R, Andriamanohisoa SF, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22(2):572–583

    Article  CAS  PubMed  Google Scholar 

  • Wang CK (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manag 222:9–16

    Article  Google Scholar 

  • Wirth C, Schumacher J, Schulze ED (2004) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139

    Article  PubMed  Google Scholar 

  • Xiang WH, Zhou J, Ouyang S, Zhang SL, Lei PF, Li JX, Deng XW, Fang X, Forrester DI (2016) Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. Eur J For Res 135:963–979

    Article  CAS  Google Scholar 

  • Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92(10):1887–1894

    Article  PubMed  Google Scholar 

  • Yitebitu M, Eshetu ZA, Nune S (2010) Ethiopian forest resources: current status and future management options in view of access to carbon finances. Ethiopian Climate Change and Networking and The United Nation Development Programme, Unpublished review paper, pp 1–55

  • Zeng WS, Zhang LJ, Chen XY, Cheng ZC, Ma KX, Li ZH (2017) Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can J For Res 47:467–475

    Article  Google Scholar 

  • Zewdie M, Olsson M, Verwijst T (2009) Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenergy 33:421–428

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support for this study from the University of Gondar. We are also thankful to the Alitash National Park staff for technical and logistic supports during the study and for contributing to the success of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmamaw Alemu.

Additional information

Project funding: The project was fully financed by the University of Gondar.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abich, A., Mucheye, T., Tebikew, M. et al. Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. J. For. Res. 30, 1619–1632 (2019). https://doi.org/10.1007/s11676-018-0707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0707-5

Keywords

Navigation