Skip to main content
Log in

Contrasting arthropod communities associated with dwarf mistletoes Arceuthobium globosum and A. vaginatum and their host Pinus hartwegii

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Arthropod communities and epiphytic plants associated with tree canopies have been widely studied and have revealed a great diversity of organisms; however, the community hosted by parasitic plants, such as dwarf mistletoes, remains poorly known. In the coniferous forests of North America, dwarf mistletoe infection (Arceuthobium spp.) significantly damages the health of the forest, causing large financial losses for the forest industry, but it also positively affects diversity, especially of mammals and birds. This study examined the attributes of the arthropod communities associated with two species of dwarf mistletoe [Arceuthobium globosum Hawksw. & Wiens and A. vaginatum (Humb. & Bonpl. ex Willd.) J. Presl] and their host Pinus hartwegii Lindl. In 2010, in five sites located in Zoquiapan (Central Mexico), we collected plant tissue from the three species bimonthly. Arthropods were separated from the plant tissue and identified to the finest level possible. We collected 32,059 individuals, for which 51 morphospecies were identified, belonging to 15 taxonomic orders; the most abundant orders for the three plants were Prostigmata, Thysanoptera and Homoptera. The community associated with P. hartwegii had the highest value of diversity (H′ = 1.47; A. globosum, H′ = 0.64; A. vaginatum, H′ = 0.68) and species richness (S = 40; A. globosum, S = 30; A. vaginatum, S = 35); while abundance was significantly higher for the mistletoes (A. globosum, n = 407 individuals/sample; A. vaginatum, n = 536 individuals/sample; P. hartwegii, n = 134 individuals/sample). Species richness, abundance and diversity were significantly different for the three studied plants, as well for sampling month and the interaction of these two factors (except for diversity). The results suggest that the canopy of P. hartwegii is an important element in the ecosystem, providing a mosaic of resources and conditions to the associated fauna. We also propose that mistletoes are key species within the forest canopy, as they greatly influence the establishment of diverse organisms, particularly arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agren J, Danell K, Elmqvist T, Ericson L, Hjältén J (1999) Sexual domorphism and biotic interactions. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 217–246

    Chapter  Google Scholar 

  • Anderson SJ, Braby MF (2009) Invertebrate diversity associated with tropical mistletoe in a suburban landscape from northern Australia. North Territ Nat 21:2–23

    Google Scholar 

  • Arriaga L, Espinoza JM, Aguilar C, Martínez E, Gómez L, Loa E (2002) Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City

    Google Scholar 

  • Basset Y (1996) Local communities of arboreal herbivores in Papua New Guinea predictors of insect variables. Ecology 77:1906–1919

    Article  Google Scholar 

  • Basset Y, Arthington J (1992) The arthropod community of an Australian rainforest tree: abundance of component taxa. Aust J Ecol 17:89–98

    Article  Google Scholar 

  • Borror DJ, Johnson NF, Triplehorn CA (1989) An introduction to the study of insects. Saunders College, Philadelphia

    Google Scholar 

  • Burns AE, Cunningham SA, Watson DM (2011) Arthropod assemblages in tree canopies: a comparison of orders on box mistletoe (Amyema miquelii) and its host eucalypts. Aust J Entomol 50:221–230

    Google Scholar 

  • Castaño-Meneses G, Palacios-Vargas JL, Cutz-Pool L (2004) Feeding habits of Collembola and their ecological niche. Anales del Instituto de Biología, Serie Zoología 75:135–142

    Google Scholar 

  • Connor EF, McCoy E (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833

    Article  Google Scholar 

  • de Rzedowski GC, Rzedowski J, and contributors (2001) Flora fanerogámica del Valle de México. Instituto de Ecología, A. C. and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro

  • Fitzjarrald DR, Moore KE (1995) Physical mechanism of heat and mass exchange between forest and the atmosphere. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 45–72

    Google Scholar 

  • Goulet H, Huber J (1993) Hymenoptera of the world: an identification guide to families. Research Branch Agriculture, Ontario

    Google Scholar 

  • Grimble DG, Beckworth RC (1993) Temporal changes inpresence of late instar Mitoura spinetorum (Lycaenidae) in eastern Oregon. J Lepid Soc 47:329–330

    Google Scholar 

  • Hawksworth FG (1983) Mistletoes as forest parasites. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, New York, pp 320–329

    Google Scholar 

  • Hawksworth FG, Wiens D (1996) Dwarf mistletoes: biology, pathology and systematics. Agriculture Handbook 709. U.S.D.A. Forest Service, Washington, DC

    Google Scholar 

  • Hawksworth FG, Wiens D, Geils BW (2002) Arceuthobium in North America. In: Geils BW, Cibrián-Tovar J, Moody B (eds) Mistletoes of North American conifers. U.S.D.A. Forest Service, Ogden, pp 29–56

    Google Scholar 

  • Keifer HH (1952) Eriophyid studies. XIX. Bulletin 41. State of California, Department of Agriculture, Sacramento, CA, pp 65–74

  • Kennett CE (1963) Some species of Typhlodromus from dwarf mistletoes in North America (Acarina-Phytoseidae). Pan Pac Entomol 39:247–252

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison-Wesley Educational Publication, Menlo Park

    Google Scholar 

  • Kuijt J (1955) Dwarf mistletoes. Bot Rev 10:569–619

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structures habitats: a meta-analytical synthesis. Oecologia 139:1–10

    Article  PubMed  Google Scholar 

  • Larsen EM, Rodrick E, Milner R (eds) (1995) Management recommendations for Washington’s priority species, vol 1: invertebrates. Washington Department of Fish and Wildlife, Olympia

    Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Legendre L, Legendre P (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Letourneau DK, Dyer LA (1998) Density patterns of Piper ant-plants and associated arthropods: top-predator trophic cascades in a terrestrial system. Biotropica 30:162–169

    Article  Google Scholar 

  • Lomolino MV (2000) Ecology´s most general, yet protean pattern: the species-area realationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • López-Gómez V, Cano-Santana Z (2010) Best host-plant attribute for species-area relationship, and effects of the shade, conspecific distance and plant phenophase in an arthropod community within the grass Muhlenbergia robusta. Entomol Sci 13:174–182

    Article  Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • March WA, Watson D (2007) Parasites boost productivity: effects of mistletoe on litterfall dynamics in a temperate Australian forest. Oecologia 154:339–347

    Article  PubMed  Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes. Pathology, systematic, ecology and management. Plant Dis 92:988–1006

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Article  Google Scholar 

  • Mooney KA (2001) The life history of Dasypyga alternosquamella Ragonot (Pyralidae) feeding on the Southwestern dwarf mistletoe (Arceuthobium vaginatum) in Colorado. J Lepid Soc 55:140–143

    Google Scholar 

  • Moran VC, Southwood TRE (1982) The guild composition of arthropods communities in trees. J Anim Ecol 51:289–306

    Article  Google Scholar 

  • Morecroft MT, Taylor P, Oliver HR (1985) Air and soil microclimates of deciduous woodland compared to an open. Agric For Meteorol 90:141–156

    Article  Google Scholar 

  • Morse JG, Hoddle MS (2006) Invasion biology thrips. Annu Rev Entomol 51:67–89

    Article  PubMed  CAS  Google Scholar 

  • Ndagurwa GT, Dube JS, Mlambo D (2014) The influence of mistletoes on nutrient cycling in a semi-arid savanna, southwest Zimbabwe. Plant Ecol 215:15–26

    Article  Google Scholar 

  • Obieta C, Sarukhán J (1981) Estructura y composición la vegetación herbácea de un bosque uniespecífico de Pinus hartwegii. I. Estructura y composicion florística. Boletín de la Sociedad Botánica de México 41:75–125

    Google Scholar 

  • Penfield FB, Stevens RE, Hawksworth FG (1976) Pollination ecology of three Rocky Mountain dwarf mistletoe. For Sci 22:473–484

    Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Post DM, Conners ME, Goldberg DS (2000) Prey preference by a top predator and the stability of linked food chains. Ecology 81:8–14

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge B, Bond W, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Prinzing A (1997) Spatial and temporal use of microhabitats as a key strategy for the colonization of tree bark by Entomobrya nivalis L. (Collembola, Entomobryidae). In: Stork N, Adis J, Didham R (eds) Canopy arthropods. Chapman and Hall, London, pp 453–476

    Google Scholar 

  • Pritchard AE, Baker EW (1958) The false spider mites (Acarina: Tenuipalpidae). University of California Publications in Entomology, Berkely 14:207–208

    Google Scholar 

  • Queijeiro-Bolaños M, Cano-Santana Z, García-Guzmán G (2014) Incidence, severity and aggregation patterns of two sympatric dwarf mistletoe species (Arceuthobium spp.) in Central Mexico. Eur J Forest Res 113:297–306

    Article  Google Scholar 

  • R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 01 May 2016

  • Room PM (1972) The constitution and natural history of the fauna of the mistletoe Tapinanthus bangwensis (Engl. & K. Krause) growing on cocoa in Ghana. J Anim Ecol 41:519–535

    Article  Google Scholar 

  • Samways MJ (1994) Insect conservation biology. Chapman and Hall, London

    Google Scholar 

  • Schoener TW (1976) Species area relationship within archipelagoes: model and evidence from island birds. Proc XVl Int Ornithol Congr 6:629–642

    Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large: the Robert H. MacArthur Award Lecture. Ecology 70:1559–1589

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University, New York

    Google Scholar 

  • Schowalter TD (2011) Insect ecology. An ecosystem approach. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • SMN, Servicio Meteorológico Nacional (2013) Normales climatológicas de México. http://smn.cna.gob.mx/. Accessed 01 June 2013

  • Shaw D (2004) Vertical organization of canopy biota. In: Lowman MD, Rinker HB (eds) Forest canopies. Elsevier Academic Press, Amsterdam, pp 73–101

    Chapter  Google Scholar 

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • Southwood TRE, Moran VC, Kennedy CEJ (1982) The richness, abundance, and biomass of the arthropod communities in trees. J Anim Ecol 51:635–650

    Article  Google Scholar 

  • Stevens RE, Hawksworth FG (1970) Insects and mites associated with dwarf mistletoes. Research Paper RM-59. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO

  • Stevens RE, Hawksworth FG (1984) Insect-dwarf mistletoe associations: an update. In: Hawksworth FG, Scharpf RF (tech. coords). Biology of dwarf mistletoes: proceedings of the symposium; General Technical ReportRM-111. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, pp 94–101

  • Stork NE (1991) The composition of the arthropod fauna of Bornean lowland rain forest trees. J Trop Ecol 7:161–180

    Article  Google Scholar 

  • Stork NE, Adis J, Didham RK (eds) (1997) Canopy arthropods. Chapman and Hall, London

    Google Scholar 

  • Tassone RA, Majer JD (1997) Abundance of arthropods in tree canopies of Banksia woodland on the Swan Coastal Plain. J R Soc West Aust 80:281–286

    Google Scholar 

  • Tovar-Sánchez E, Cano-Santana Z, Oyama K (2003) Canopy arthropod communities on Mexican oaks at sites with different disturbance regimes. Biol Conserv 115:79–87

    Article  Google Scholar 

  • Visser S (1985) Role of the soil invertebrates in determining the composition of soil microbial communities. In: Fitter AH (ed) Ecological Interactions in soil. Plants, microbes and animals. Blackwell, New York, pp 279–317

    Google Scholar 

  • Watson DM (2001) Mistletoe-A keystone resource in forest and woodland worldwide. Annu Rev Ecol Syst 32:219–249

    Article  Google Scholar 

  • Watson DM, Herring M (2012) Mistletoe as a keystone resource: an experimental test. Proc Biol Sci 279:3853–3860

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker PL (1984) The insect fauna of mistletoe (Phoradendron tomentosum, Loranthaceae) in Southern Texas. Southwest Nat 29:435–444

    Article  Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2001) The species-area relationship does not have an asymptote. J Biogeogr 28:827–830

    Article  Google Scholar 

  • Yanoviak SP, Nadkarni NM (2001) Arthropod diversity in epiphytic bryophytes of a neotropical cloud forest. In: Ganeshaiah KN, Shaanker RU, Bawa KS (eds), Tropical ecosystems: structure, diversity and human welfare. Proceedings of the international conference on tropical ecosystems, Bangalore, India, 15–18 July 2001. Oxford-IBH, pp 416–419

  • Yanoviak SP, Nadkarni NM, Gering JC (2003) Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodivers Conserv 12:731–741

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We thank Iván Castellanos-Vargas for his technical support and Arturo García for critically reviewing this work. Invaluable support for identifying specimens was provided by Ricardo Iglesias Mendoza (Cryptostigmata), Fernando Álvarez Padilla (Araneomorphae), Roberto Johansen Naime and Elizabeth Mejorada (Thysanoptera) and Javier García Figueroa (Psocoptera). This study was supported by UNAM-DGAPA-PAPIIT IN220912 Grant to ZC-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor López-Gómez.

Additional information

Project funding: This study was supported by UNAM-DGAPA-PAPIIT IN220912 Grant to ZC-S.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Appendix

Appendix

List and abundances of arthropods species associated with the dwarf mistletoes Arceuthobium globosum and A. vaginatum, and their host Pinus hartwegii. Organisms were collected in the Iztaccíhuatl-Popocatépetl National Park, Mexico. The taxonomic classification was based on Borror et al. (1989).

Morphospecies

Taxonomic classification

Host plant

A. globosum

A. vaginatum

P. hartwegii

 

Phylum Artrhopoda

   
 

Class Arachnida

   
 

Order Araneae

   
 

Suborder Araneomorphae

   
 

Superfamily Araneoidea

   
 

Family Araneidae

   

1

 Araneidae sp. 1

1

0

0

2

 Araneidae sp. 2

0

1

0

 

Family Theridiidae

   

3

 Theridiidae sp. 1

7

5

2

4

 Theridiidae sp. 2

0

1

0

5

 Theridiidae sp. 3

0

0

1

 

Family Linyphiidae

   

6

 Linyphiidae sp. 1

0

3

0

7

 Linyphiidae sp. 2

0

0

1

 

Family Tetragnathide

   

8

 Tetragnathide sp. 1

0

0

3

 

Order Opiliones

   

9

 Opilionide sp. 1

0

1

1

 

Class Acari

   
 

Order Mesostigmata

   
 

Suborder Monogynapsida

   
 

Cohort Gamasina

   
 

Subcohort Dermanyssiae

   
 

Super Family Phytoseioidea

   
 

Family Phytoseiidae

   

10

 Phytoseiidae sp. 1

5

16

10

11

 Phytoseiidae sp. 2

5

5

48

12

 Phytoseiidae sp. 3

5

0

3

 

Suborder Prostigmata

   
 

Cohort Raphignathina

   
 

Superfamily Tetranychoidea

   
 

Family Tenuipalpidae

   
 

Genera Brevipalpus

   

13

 Brevipalpus sp. 1

9304

7427

2400

 

Superfamily Tetranychoidea

   
 

Family Tetranychidae

   

14

 Tetranychidae sp. 1

15

45

153

 

Superfamily Raphignathoidea

   
 

Family Camerobiidae

   
 

Genera Camerobia

   

15

 Camerobia sp. 1

18

8

12

 

Cohort Parasitengomina

   
 

Superfamily Erythraeoidea

   
 

Family Erythraeidae

   

16

 Erythraeidae sp. 1

8

12

36

 

Suborder Oribatida

   
 

Cohort Brachypylina

   
 

Superfamily Cymbaeremaeoidea

   
 

Family Cymbaeremaeidae

   
 

Genera Scapheremaeus

   

17

 Scapheremaeus sp. 1

5

8

7

 

Superfamily Ceratozetoidea

   
 

Family Ceratozetidae

   
 

Genera Trichoribates

   

18

 Trichoribates sp. 1

20

113

307

 

Superfamily Oripodoidea

   
 

Family Oripodidae

   

19

 Oripodidae sp. 1

5

20

44

 

Cohort Nothrina

   
 

Superfamily Crotonioidea

   
 

Family Camisiidae

   
 

Genera Camisia

   

20

 Camisia sp. 1

5

6

3

 

Class Hexapoda

   
 

SubClass Collembola

   
 

Order Entomobryomorpha

   
 

Superfamily Entomobryoidea

   
 

Family Entomobryidae

   

21

 Entomobryidae sp. 1

28

45

227

 

Order Poduromorpha

   
 

Superfamily Hypogastruroidea

   
 

Family Hypogastruridae

   

22

 Hypogastruridae sp. 1

0

4

1

 

Class Insecta

   
 

Order Psocoptera

   
 

Family Lachesillidae

   
 

Subfamily Lachesillinae

   
 

Genera Lachesilla

   

23

 Lachesilla pinicola

24

44

161

 

Order Thysanoptera

   
 

Family Thripidae

   
 

Genera Frankiniella

   

24

 Frankiniella tolucensis

2548

7477

238

25

 Frankiniella fallaciosa

6

14

0

26

 Frankiniella minuta

0

2

0

27

 Frankiniella sp. 1

0

1

0

 

Order Hemiptera

   
 

Suborder Heteroptera

   

28

Heteroptera Nymph sp. 1

23

84

24

29

 Heteroptera sp. 1

9

13

13

30

 Heteroptera sp. 2

0

0

5

 

Suborder Homoptera

   

31

 Homoptera Nymph sp. 1

15

24

417

 

Superfamily Membracoidea

   
 

Family Membracidae

   

32

 Membracidae sp. 1

2

0

8

 

Family Cicadellidae

   

33

 Cicadellidae sp. 1

0

0

22

 

Order Hymenoptera

   
 

Suborder Apocrita

   

34

 Hymenoptera Larva sp. 1

64

58

83

 

Superfamily Vespoidea

   
 

Family Vespidae

   

35

 Vespidae sp. 1

0

1

0

 

Superfamily Ichneumonoidea

   
 

Family Ichneumonidae

   

36

 Ichneumonidae sp. 1

0

0

1

 

Superfamily Platygastroiae

   
 

Family Platygastroidea

   

37

 Platygastroidea sp. 1

5

1

3

 

Superfamily Ceraphonidea

   
 

Family Ceraphonidae

   

38

 Ceraphonidae sp. 1

0

1

0

 

Superfamily Chilsidoidea

   
 

Family Chilsidoidae

   

39

 Chilsidoidae sp. 1

0

0

1

 

Family Eulophidae

   

40

 Eulophidae sp. 1

1

0

0

 

Order Lepidoptera

   

41

 Lepidoptera Larva sp. 1

23

30

5

42

 Lepidoptera sp. 1

0

0

1

 

Order Coleoptera

   

43

 Coleoptera Larva sp. 1

50

45

19

44

 Coleoptera Larva sp. 2

13

5

16

 

Family Curculionidae

   

45

 Curculionidae sp. 1

4

7

5

46

 Curculionidae sp. 2

0

0

3

 

Order Diptera

   

47

 Diptera Larva sp. 1

0

6

5

48

 Diptera sp. 1

5

8

3

49

 Diptera sp. 2

1

0

0

50

 Diptera sp. 3

0

0

1

 

Order Mecoptera

   

51

 Mecoptera sp. 1

0

0

1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Salcedo, L.F., Queijeiro-Bolaños, M.E., López-Gómez, V. et al. Contrasting arthropod communities associated with dwarf mistletoes Arceuthobium globosum and A. vaginatum and their host Pinus hartwegii . J. For. Res. 29, 1351–1364 (2018). https://doi.org/10.1007/s11676-017-0544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0544-y

Keywords

Navigation