Skip to main content
Log in

Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

A protocol for micropropagation using nodal explants from mature Pinus massoniana trees has been developed. Time of explant collection is crucial for the initial success of aseptic culture. Explants collected in early March gave the highest percentage of explant survival (64.5%) and shoot-forming percentage (52.3%). Thidiazuron (TDZ) concentration significantly influenced shoot formation; 4 μM TDZ was optimum, with 4.8 shoots produced per explant with a mean length of 7.1 cm after 120 days of culture. Regenerated shoots rooted for 60 days in basic medium with 1 μM NAA were ready for growth in pots. This is the first report on plantlet regeneration in vitro from mature trees of P. massoniana that provides a reliable method for propagating selected elites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad N, Anis M (2007) Rapid plant regeneration protocol for cluster bean (Cyamopsis tetragonoloba L. Taub.). J Hortic Sci Biotechnol 82:585–589

    Article  CAS  Google Scholar 

  • Ahmad N, Siddique I, Anis M (2006) Improved plant regeneration in Capsicum annuum from nodal segment. Biol Plant 50:701–704

    Article  CAS  Google Scholar 

  • Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás R (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:879–885

    Article  CAS  Google Scholar 

  • Andersone U, Ievinsh G (2002) Changes of morphogenic competence in mature Pinus sylvestris L. buds in vitro. Ann Bot 90:293–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    Article  CAS  PubMed  Google Scholar 

  • Capelle SC, Mok DWS, Kirchner SC, Mok MC (1983) Effects of thidiazuron on cytokinin autonomy and the metabolism of N6 (2-isopentenyl)[8-′4C] adenosine in callus tissue of Phaseolus lunatus L. Plant Physiol 73:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Lee N (1992) Tissue culture of Pleione formosana Hayata. J Chin Soc Hortsci 38:80–90

    Google Scholar 

  • Chen TY, Chen JT, Chang WC (2004) Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell Tissue Organ Cult 76:11–15

    Article  CAS  Google Scholar 

  • Davis JM, Becwar MR (2007) Examples of current implementation of cloning technology worldwide. In: Page A (ed) Developments in tree cloning. Pira International Ltd, Leatherhead, pp 32–33

    Google Scholar 

  • De Diego N, Montalbán IA, Fernández E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607–2615

    Article  Google Scholar 

  • De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of adult Pinus sylvestris L. trees. S Afr J Bot 76:158–162

    Article  Google Scholar 

  • Ding GJ, Zhou ZC, Wang ZR et al (2006) Cultivation and Utilization of Pulpwood Stand for Pinus massoniana[M]. China Forestry Press, Beijing, p 307

    Google Scholar 

  • Dumas E, Monteuuis O (1995) In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell Tissue Organ Cult 40:231–235

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Ebert A, Taylor F, Blake J (1993) Changes of 6-benzylaminopurine and 2, 4 dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tissue Organ Cult 33:157–162

    Article  CAS  Google Scholar 

  • Evers PW, Donkers J, Prat A, Vermeer E (1988) Micropagation of forest trees through tissue culture. Pudoc Wageningen, Netherlands, p 84

    Google Scholar 

  • Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80:187–190

    Article  CAS  Google Scholar 

  • Hohtola A (1988) Seasonal changes in explant viability and contamination of tissue culture from mature Scots pine. Plant Cell Tissue Organ Cult 15:211–222

    Article  Google Scholar 

  • Hu DN, Shang-guan XC, Liu LY (2009) In vitro regeneration from stem segments of Cyclocarya paliurus (Batal.) Iljinskaja. Hubei Agric Sci 6:1300–1303

    Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Kanyand N, Dessai AP, Prakash SC (1994) Thidiazuron promotes high frequency regeneration of peanut (Arachis hypogea) plants in vitro. Plant Cell Rep 14:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kartsonas E, Papafotiou M (2007) Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tissue Organ Cult 90:111–116

    Article  CAS  Google Scholar 

  • Khan MI, Ahmad N, Anis M (2011) The role of cytokinins on in vitro shoot production in Salix tetrasperma Roxb.: a tree of ecological importance. Trees 25:577–584

    Article  Google Scholar 

  • Kumar R, Sharma K, Agrawal V (2005) In vitro clonal propagation of Holarrhena antidysenterica (L.) Wall. through nodal explants from mature trees. In Vitro Cell Dev Biol Plant 41:137–144

    Article  CAS  Google Scholar 

  • Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A (2000) Changes of cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol 20:467–475

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Teng WL (1987) Endogenous growth promoter and inhibitor levels in Pleione formosana corms. Acta Hortic 205:225–231

    Article  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou MB, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 92:31–45

    Article  Google Scholar 

  • Lu CY (1993) The use of thidiazuron in tissue culture. In vitro Cell Dev Biol Plant 29:92–96

    Article  Google Scholar 

  • Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N′-1,2,3-thidiazol-5-ylurea (thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Moncaleán P, Alonso P, Centeno ML, Cortizo M, Rodríguez A, Fernández B, Ordás R (2005) Organogenic response of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol 25:1–9

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium x hortorum Bailey. Plant Growth Regul 35:269–275

    Article  CAS  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pirttilä AM, Laukkanen H, Hohtola A (2002) Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214:848–852

    Article  PubMed  Google Scholar 

  • Saklani K, Singh S, Purohit VK, Prasad P, Nautiyal AR (2015) In vitro propagation of Rudraksha (Elaeocarpus sphaericus (Gaertn.) K. Schum): a biotechnological approach for conservation. Physiol Mol Biol Plants 21(4):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat MS, Manokari M (2016) In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiol Mol Biol Plants 22(1):131–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia: a medicinal plant. Acta Physiol Plant 29:333–338

    Article  Google Scholar 

  • Stojicic D, Budimir S (2002) Cytokinin-mediated axillary shoot formation in Pinus heldreichii. Biol Plant 48:477–479

    Article  Google Scholar 

  • Victor JMR, Murthy BNS, Murch SJ, Krihnaraj S, Saxena PK (1999) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogea). Plant Growth Regul 28:41–47

    Article  CAS  Google Scholar 

  • Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Article  Google Scholar 

  • Yao RL, Wang Y, Wu YM (2016) Key factors affecting rooting of Pinus massoniana by tissue culture. Guihaia 36(11):1288–1294

    Google Scholar 

  • Zhu LH, Wu XQ, Qu HY, Ji J, Ye JR (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tissue Organ Cult 102(1):121–128

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Science Research and Technology Development from the Department of Science and Technology of Guangxi (14125008-2-17, 1598006-5-7), the Natural Science Foundation of China (31360178), the Key Program of Guangxi Forestry Bureau ([2015]7), and as an independent project by the Key Laboratory of Gaungxi Fine Timber Forest Resources Cultivation (13A-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiling Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Project funding: This work funded by the Science Research and Technology Development from the Department of Science and Technology of Guangxi (14125008-2-17, 1598006-5-7), the Natural Science Foundation of China (31360178), the Key Program of Guangxi Forestry Bureau ([2015]7), and as an independent project by the Key Laboratory of Gaungxi Fine Timber Forest Resources Cultivation (13A-01-01).

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yao, R. Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium. J. For. Res. 28, 1169–1175 (2017). https://doi.org/10.1007/s11676-017-0412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0412-9

Keywords

Navigation