Skip to main content
Log in

Comparative field performance of some agricultural crops under a canopy of Populus deltoides and Ulmus wallichiana

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The performance of maize, beans and sunflower was evaluated under a canopy of Populus deltoides and Ulmus wallichiana at Faculty of Agriculture, Wadura. The germination, growth and yield of the three test crops were suppressed under both tree species. The reduction, however, decreased when the cultivation of test crops was continued for three years. The inhibition potential generally is in the order of P. deltoides < U. wallichiana for maize and sunflower and P. deltoides > U. wallichiana for beans. Available soil N, P and K increased under the canopy of the selected tree species. The soils under U. wallichiana were more fertile than those under P. deltoides. Chromatographic investigation of extracts showed that the soils under P. deltoides and U. wallichiana differed in their composition of phenolic acids and phenolic glycocides. Except for caffic acid, all other allelochemicals disappeared and were no longer recovered in soil samples obtained after the second or third year of cultivation. Tree-crop compatibility can be explored in greater detail for improved management of traditional agro-ecosystems in Kashmir to increase the overall productivity of the land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford ÉR, Perry LG, Qin B, Vivanco JM, Paschke MW. 2007. A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biology and Biochemistry, 39(7): 1812–1815.

    Article  CAS  Google Scholar 

  • Altieri MA, Trujillo FJ, Farrcll J. 1987. Plant-insect interactions and soil fertility relations in agroforestry systems: implications for the design of sustainable agroecosystems. In: Gholz HK (ed), Agroforestry: realities, possibilities and potentials. Dordrecht, Netherlands: Nijhoff and ICRAF, pp. 89–108.

    Google Scholar 

  • Blanco JA. 2007. The representation of allelopathy in ecosystem-level forest models. Ecological Modeling, 209(2–4): 65–77.

    Article  Google Scholar 

  • Blum U. 1998. Effects of microbial utilization of phenolic acids and their breakdown products on allelopathic interactions. Journal of Chemical Ecology, 24(4):685–708.

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review Plant Biology. 54(1): 519–546.

    Article  CAS  Google Scholar 

  • Bowen GD, Rovira AD. 1999. The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66: 1–102.

    Article  Google Scholar 

  • Carlini CR, Grossi de SMF. 2002. Plant toxic proteins with insecticidal properties: a review potentialities as bioinsecticides. Toxicon, 40(11): 1515–1539.

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, FD Hostetter. 1969. Phenolic constituents of elm wood. 2-Naphthoic acid derivatives from UImus thomasii. Tetrahedron, 25: 3223–3229.

    Article  CAS  Google Scholar 

  • Cheng HH. 1989. Assessment of fate and transport of allelochemicals in soils. In: Chou CS, Waller GR (eds.), Phytochemical ecology: Allelochemicals, mycotoxins and insect pheromones and allomones. Academia Sinica Monograph Ser. No.9, Taipei, ROC: Inst. of Botany, pp. 209–215

    Google Scholar 

  • Cheng HH. 1992. A conceptual framework for assessing allelochemicals in the soil environment. In: Rizvi SJH, Rizvi V (eds.), Allelopathy: Basic and Applied Aspects. New York: Chamman and Hall, pp. 21–30.

    Google Scholar 

  • Chou CH. 1983. Allelopathy in agroecosystems in Taiwan. In: Chou CS, Waller GR (eds.), Allelochemicals and pheromones. Phytochemical ecology: Allelochemicals, mycotoxins and insect pheromones and allomones. Academia Sinica Monograph Ser. No.9, Taipei, ROC: Inst. of Botany, pp, 27–64.

    Google Scholar 

  • Chou CH, Chiang YC, Cheng HH. 1981. Autointoxication mechanisms of Oryza sativa III. Effect of temperate on phytotoxins production during rice straw decomposition in soil. Journal of Chemical Ecology, 7: 741–52.

    Article  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L. 2002. The phenylpropanoid pathway and plant defense-a genomics perspective. Molecular Plant Pathology, 3(5); 371–390.

    Article  PubMed  CAS  Google Scholar 

  • Gaur RD. 1999. Flora of District Garhwal, North West Himalaya. Srinagar, Garhwal, India: Trans Media, p. 86.

    Google Scholar 

  • Gomez KA, Gomez AA. 1984. Statistical Procedure for Agricultural Research. 2 nd edition. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Goss JA. 1973. Physiology of plants and their cells. New York: Pergamon Press Inc.

    Google Scholar 

  • Greenaway W, May J, Whatley FR. 1989. Flavonoid aglycones identified by gas chromatography-mass spectrometry in bud exudate of Populus balsamifera. Journal of Chromatography, 472(2): 393–400.

    CAS  Google Scholar 

  • Harborne JB, Williams CA. 2000. Advances in flavonoid research since 1992. Phytochemistry, 55(6): 481–504.

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Mabry TJ. 1982. The Flavonoids, Advances in Research. New York: Chapman & Hall.

    Book  Google Scholar 

  • Hepperly P, Aguilar-Erazo H, Perez R, Diaz M, Reyes C. 1992. Pigeon pea and velvet bean allelopathy. In: Rizvi SJH, Rizvi V (eds), Allelopathy: Basic and Applied Aspects. New york: Chamman and Hall, pp. 357–370.

    Google Scholar 

  • Hoagland L, Carpenter-Boggs L, Reganold JP, Mazzola M. 2008. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biology and Biochemistry, 40(7): 1689–1697.

    Article  CAS  Google Scholar 

  • Horsley SB. 1976. Allelopathic interference among plants. II Physiological modes of action. In: Proc. Fourth North Amer. For. BioI. Workshop, pp. 93–136.

    Google Scholar 

  • Hostettler FD, Seikel MK. 1969. Lignans of Ulmus thomasii heartwood. II. Lignans related to thomasic acid. Tetrahedron, 25(11): 2325–2337.

    Article  PubMed  CAS  Google Scholar 

  • Hussain F, Niaz F, Jabeen M, Burni T. 2004. Allelopathic potential of Broussonetia papyrifera Vent. Pakistan Journal of Plant Science, 10(2): 69–77

    Google Scholar 

  • Ignat I, Volf I, Popa VIA. 2011. A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4): 1821–1835.

    Article  CAS  Google Scholar 

  • Ikonen A, Tahvanainen J, Roininen H. 2001. Chlorogenic acid as an antiherbivore defense of willows against leaf beetles. Entomologia Experimentalis et Applicata, 99(1): 47–54.

    Article  CAS  Google Scholar 

  • Inderjit. 2001. Soil environmental effects on allelochemical activity. Agronomy Journal, 93: 79–84.

    CAS  Google Scholar 

  • Inderjit, Weston LA. 2001. Root interactions in higher plants: Allelopathy and competition. In: Blom CWPM, Visser EJW (eds), Root ecology. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Inderjit, Dakshni KMM. 1999. Principles and practices in plant ecology: Allelochemical interactions. CRC Press, pp. 35–40.

    Google Scholar 

  • Jain SK. 1991. Dictionary of Indian Folk Medicine and Ethnobotany. Paschim Vihar, New Delhi, India: Deep Publications, p. 183.

    Google Scholar 

  • Jilani G, Mahmood S, Chaudhary AN, Hassan I, Akram M. 2008. Allelochemicals: sources, toxicity and microbial transformation in soil: a review. Annals of Microbiology, 58(3): 351–357.

    Article  CAS  Google Scholar 

  • Josre S. 2009. Agroforestry for ecosystem services and environmental benefits. Agroforestry Systems, 76: 1–10.

    Article  Google Scholar 

  • Kil BS. 1992. Effect of pine allelochemicals on selected species in Korea. In: Rizvi SJH, Rizvi V (eds), Allelopathy: Basic and Applied Aspects. New York: Chamman and Hall, pp. 205–241.

    Google Scholar 

  • Kruse M, Strandberg M, Strandberg B. 2000. Ecological effects of allelopathic plants — a review. Silkeborg, Denmark: National Environmental Research Institute-NERI Technical Report No. 315.

    Google Scholar 

  • Lehman RG, Cheng HH. 1988. Reactivity of phenolic acids in soils and formation of oxidation products. Soil Science Society of America Journal, 52: 1304–1309.

    Article  Google Scholar 

  • Lodhi MAK, Rice EL. 1971. Allelopathic effects of Celtis laevigata. Bulletin of the Torrey Botanical Club, 98(2): 83–90.

    Article  Google Scholar 

  • Louis S, Delobel B, Gressent F, Duporta G, Diola O, Rahiouia I, Charlesa H, Rahbe Y. 2007. Broad screening of the legume family for variability in seed insecticidal activities and for the occurrence of the A1b-like knotting peptide entomotoxins. Phytochemistry, 68(4): 521–535.

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Galindo J, Galindo JCG. 2007. Evolution and current status of ecological Phytochemistry. Phytochemistry, 68(22–24): 2917–2936.

    Article  PubMed  CAS  Google Scholar 

  • MeClaugherty CA, Aber JD, Melillo JM. 1982. The role of fine roots in the organic matter and nitrogen budget of two forested ecosystems. Ecology, 63(5): 1481–1490.

    Article  Google Scholar 

  • Mohsin F, Singh RP, Jattan SS, Singh K. 2000. Root studies in Eucalyptus hybrid plantation at various ages. Indian Forester, 126(11): 1165–1174.

    Google Scholar 

  • Nair PKR, Kumar BM, Nair YD. 2009. Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1): 10–23.

    Article  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-Tiitto R. 2005. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology, 11(8): 1305–1324.

    Article  Google Scholar 

  • Piper GS. 1966. Soil and plant analysis. Bombay: Hans Publications, p. 368.

    Google Scholar 

  • Pistelli L, Bertoli A, Lepori E, Morelli I, Panizzi L. 2002. Antimicrobial and antifungal activity of crude extracts and isolated saponins from Astragalus verrucosus. Fitoterapia, 73(4): 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Popa VI, Dumitru M, Volf I, Anghel N. 2008. Lignin and polyphenols as allelochemicals. Industrial Crops and Products, 27(2): 144–149.

    Article  CAS  Google Scholar 

  • Qu XH, Wang JG. 2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity and community diversity. Applied Soil Ecology, 39(2): 172–179.

    Article  Google Scholar 

  • Rawat P, Kumar M, Sharma K, Chattopadhyay N, Maurya R. 2009. Ulmosides A and B. Flavonoid 6 C — Glycoside from Ulmus wallichiana. Bioorganic and Medicinal Chemistry Letters, 19(16): 4684–4687.

    Article  PubMed  CAS  Google Scholar 

  • Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A. 1999. Allelopathic intractions in agroforestry systems. Critical Reviews in Plant Sciences, 18(6): 773–779.

    Article  CAS  Google Scholar 

  • Sharma KK. 1992. Wheat cultivation in association with Acacia nilotica (L.) Wild ex. Del. field bound plantations — a case study. Agroforestry Systems, 17(1): 43–51.

    Article  Google Scholar 

  • Sharma NK, HP Sing, KS Dadhwal. 2000. Nutrient returns through litter fall in Populus deltoides based agroforestry system. Indian Forester, 126(3): 295–299.

    Google Scholar 

  • Singh A, Dhanda RS, Ralhan RK. 1993. Performance of wheat varieties under poplar (Populus deltoides Bartr.) plantations in Punjab (India). Agroforestry Systems, 22: 83–86.

    Article  Google Scholar 

  • Startsev N, Lieffers VJ, Landhäusser SM. 2008. Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development. Journal of Vegetation Science, 19(2): 253–260.

    Article  Google Scholar 

  • Subbiah BV, Asija CL. 1956. A rapid procedure for the estimation of available nitrogen in soil. Current Science, 25: 259–260.

    CAS  Google Scholar 

  • Tseng MH, Kuo YH, Chen YM, Chou CH. 2003. Allelopathic potential of Macraranga tanarius (L.) muell.-arg. Journal of Chemical Ecology, 29(5): 1269–1286.

    Article  PubMed  CAS  Google Scholar 

  • Vogel JA. 1961. Quantitative inorganic analysis including elementry instrumental analysis. London: Longman, Green and Co. Ltd.

    Google Scholar 

  • Wang H, Huang Y, Huang H, Wang KM, Zhou SY. 2005. Soil properties under young Chinese fir-based agroforestry systems in mid-subtropical China. Agroforestry Systems, 64(2): 131–141.

    Article  Google Scholar 

  • Wang TSC, Li SW, Ferng YL. 1978. Catalytic polymerization of phenolic compound by clay minerals. Soil Science, 126(1): 15–21.

    Article  CAS  Google Scholar 

  • Weih M, Didon UME, Ronnbergwastljung AC, Bjorkman C. 2008. Integrated agricultural research and crop breeding: Allelopathic weed control in cereals and long-term productivity in perennial biomass crops. Agricultural Systems, 97(3): 99–107.

    Article  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T, AN M. 2001. Screening methods for the evaluation of crop allelopathic potential. The Botanical Review, 67(3): 403–415.

    Article  Google Scholar 

  • Young HY, Gill RF. 1951. Determination of magnesium in soil and plant tissue with thiazole-yellow. Analytical Chemistry, 23(5): 751–754.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Murtaza Mushtaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoodi, T.H., Masoodi, N.A., Gangoo, S.A. et al. Comparative field performance of some agricultural crops under a canopy of Populus deltoides and Ulmus wallichiana . Journal of Forestry Research 24, 783–790 (2013). https://doi.org/10.1007/s11676-013-0417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-013-0417-y

Keywords

Navigation