Skip to main content
Log in

Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Arsenic (As) in the soils of South-Eastern Bangladesh is not only a threat for the health of millions of people but also a problem for plant growth due to its higher concentration in soil. Gmelina arborea Linn. is a promising fast growing tree species in Bangladesh which has also a potential to be planted in arsenic contaminated areas. This study assessed the role of arbuscular mycorrhizal (AM) fungi on the growth of G. arborea in arsenic amended soils at nursery stage. Before sowing seeds, soils were treated with four different concentrations (10 mg·kg−1, 25 mg·kg−1, 50 mg·kg−1, and 100 mg·kg−1) of Arsenic. Growth parameters (length of shoot and root, collar diameter, fresh and dry weight of shoot and root) of the plant, and mycorrhizal root colonization and spore population in the rhizosphere soil of G. arborea were recorded. Mycorrhizal seedlings showed better growth than non-mycorrhizal seedlings. Mycorrhizal seedlings planted in soil with 10-mg·kg−1 arsenic showed best performance in terms of growth, biomass and mycorrhizal colonization, compared to other treatments with higher concentration of arsenic. With increasing arsenic concentration, growth of seedlings, mycorrhizal infection rate and spore population, all decreased significantly (p<0.05). The mycorrhizal seedlings had as much as 40% higher increment in total growth and 2.4 times higher increment in biomass compared to non-mycorrhizal seedlings. The study clearly indicated that mycorrhizal inoculation could reduce the harmful effects of arsenic on the initial growth of G. arborea Linn. in degraded soil at nursery stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano DC. 2001. Trace Elements in the Terrestrial Environment. New York: Springer.

    Google Scholar 

  • Ahmed FRS, Killham K, Alexander I. 2006. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant and Soil, 258: 33–41.

    Article  Google Scholar 

  • Alam MGM, Allinson G, Stagnatti F, Tanaka A, Westbrooke M. 2002. Arsenic contamination in Bangladesh groundwater: a major environmental and social disaster. Int J Environ H Res, 12: 236–253.

    Google Scholar 

  • Ali MA, Badruzzaman ABM, Jalil MA, Hossain MD, Ahmed MF, Masud AA, Kamruzzaman M, Rahman MA. 2003. Arsenic in plant-soil environment in Bangladesh. In: Arsenic in Plant-Soil Environment. International Symposium on Fate of Arsenic in Environment, February 5–7, 2003, Dhaka, Bangladesh: BUET-UNU, pp. 85–112.

    Google Scholar 

  • Asher CJ, Reay PF. 1979. Arsenic uptake by barley Hordeum vulgare cultivar zephyr seedlings. Australian Journal of Plant Physiology, 6: 459–466.

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C. 2005. Microbial cooperation in the rhizosphere. Journal of Experimental Botany, 56: 1761–1778.

    Article  CAS  PubMed  Google Scholar 

  • Benthlenfalbay GJ, Pacovsky RS, Bayne HG Stafford AE. 1982. Interactions between nitrogen fixation, mycorrhizal colonization and host plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiology, 70: 446–450.

    Article  Google Scholar 

  • Bougher NL, Grove TS, Malajczuk N. 1990. Growth and phosphorous acquisition of karri Eucalyptus diversicolor F. Muell. seedlings inoculated with ectomycorrhizal fungi in relation to phosphorous supply. New Phytologist, 14: 77–85.

    Article  Google Scholar 

  • British Geological Society. 1998. Arsenic contamination of groundwater in Bangladesh; Summary of phase 1. Project entitled “Groundwater Studies for Arsenic Contamination in Bangladesh” funded by DFID. Retrieved from http://www.bgs.ac.uk/arsenic/bphase1/B_intro.htm, accessed on 15.12.09 at 10:17.

  • Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick Jr. WH. 1998. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. The Science of the Total Environment, 217(3): 189–199.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Burlo F, Burgos-Hernandez A, Lopez E, Mataix J. 1997. The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Scientia Horticulturae, 71(3–4): 167–176.

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC. 2002. Arsenic calamity in the Indian subcontinent: What lessons have been learned? Talanta, 8: 3–22.

    Article  Google Scholar 

  • Chao CC, Wang YP. 1991. Effects of heavy metals on vesicular-arbuscular mycorrhizae and nitrogen fixation of soybean in major soil groups of Taiwan. J Chin Agric Chem Soc, 29: 290–300.

    CAS  Google Scholar 

  • Chern EC, Tsai DW, Ogunseitan OA. 2007. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environmental Science &. Technology, 41: 3566–3572.

    Article  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D. 2000. Groundwater Arsenic Contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives, 108(5): 393–397.

    CAS  PubMed  Google Scholar 

  • Christie P, Li X, Chen B. 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261(1–2): 209–217.

    Article  CAS  Google Scholar 

  • Das D, Samanta G, Mandal BK, Roy CT, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D. 1996. Arsenic in groundwater in six districts of West Bengal, India. Environmental Geochemistry and Health, 18: 5–15.

    Article  CAS  Google Scholar 

  • Das PK, Sahoo PN, Jena MK. 1997. Effect of VA-mycorrhiza and rhizobia inoculation on nutrient uptake, growth attributes and yields of green gram (Vigna radiata L.). Environ Ecol, 15: 830–833.

    Google Scholar 

  • Dong Y, Zhu YG, Smith FA, Wang Y, Chen B. 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155: 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Duxbury JM, Zavala YJ. 2005. What are safe levels of arsenic in foods and soils? In: Proc. of the Symposium on The Behavior of Arsenic in Aquifers, Soils, and Plants. Implications for Management. January 16–18, 2005. Dhaka, Bangladesh: CIMMYT/USGS.

    Google Scholar 

  • Fowler BA, Chou CHSJ, Jones RL, Chen CJ. 2007. Arsenic. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L. (eds), Handbook on the toxicology of metals (3rd edition). United Kingdom: Elsivier, pp. 368–397.

    Google Scholar 

  • Friese CF, Allen MF. 1991. The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia, 83: 409–418.

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc, 46: 235–244.

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG. 2000. Sesbania aegyptiaca Pers seedlings response to VA mycorrhization in two types of soil. Phytomorphology, 50: 327–332.

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG. 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutirent content of Cassia siamea in semi-arid Indian wasteland soil. New Forests, 29: 63–73.

    Article  Google Scholar 

  • Graham JH, Duncan LW, Eissenatat DM. 1997. Carbohydrates allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol, 135: 335–343.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA. 2001. Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ, 24: 713–722.

    Article  CAS  Google Scholar 

  • Hasan MA. 2009. Contamination of soil due to irrigation with arsenic laden water and its impact on phosphorus leading to crop production in Bangladesh. DU-ACIAR Project on Arsenic transfer in Water-Soil-Plant Environment. Retrieved from http://www.eng-consult.com/arsenic/article/DU-ACIAR_Project.htm l, accessed on 24.12.09 at 02:19.

  • Heikens A. 2006. Arsenic contamination of irrigation water, soil and crops in Bangladesh: Risk implications for sustainable agriculture and food safety in Asia. FAO, Bangkok: RAP publication, pp. 38.

    Google Scholar 

  • Hossain MF. 2006. Arsenic contamination in Bangladesh-An overview. Agriculture, Ecosystems and Environment, 113: 1–16.

    Article  CAS  Google Scholar 

  • Huq SMI, Joardar JC, Parvin S, Cornell R, Naidu R. 2006. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation. Journal of Health Population and Nutrition, 24(3): 305–316.

    Google Scholar 

  • Huq SMI, Rahman A, Sultana S, Naidu R. 2003. Extent and severity of arsenic contamination in soils of Bangladesh. In: Ahmed F, Ali MA, Adeal Z. (eds), Proc.: Fate of Arsenic in the Environment, BUETUNU International Symposium, Dhaka, pp. 69–84.

    Google Scholar 

  • Islam MR, Salminen R, Lahermo PW. 2000. Arsenic and other toxic elemental contamination of groundwater, surface water, and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22: 33–53.

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil, 226: 227–234.

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Penias H. 1984. Trace Elements in Soils and Plants. Florida: CRC press Inc, Boca Raton, pp. 51–68.

    Google Scholar 

  • Leyval C, Turanau K, Haselwandter N. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7: 139–153.

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil, 136: 41–48.

    Article  Google Scholar 

  • Mantel S, Mohiuddin M, Alam MK, Olarieta JR, Alam M, Khan FMA. 2006. Improving the jhum system in Bangladesh. Leisa Magazine, 22(4): 20–21.

    Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH. 1993. The influence of chemical form and concentration of arsenic of rice growth and tissue arsenic concentration. Plant and Soil, 139: 175–183.

    Article  Google Scholar 

  • Marschner H. 1995. Mineral Nutrition for Higher Plants, 2nd edn. San Diego: Academic Press, pp. 889.

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154: 29–43.

    Article  CAS  Google Scholar 

  • Meharg AA, McNair MR. 1992. Genetic correlation between arsenate tolerance and the rate of arsenate and phosphate uptake in Holcus lanatus L. Heredity, 69: 336–341.

    CAS  Google Scholar 

  • Mridha MAU, Dhar PP. 2007. Biodiversity of arbuscular mycorrhizal colonization and spore population in different agroforestry trees and crop species growing in Dinajpur, Bangladesh. Journal of Forestry Research, 18(2): 91–96.

    Article  Google Scholar 

  • Mukherjee AB, Bhattacharya P. 2001. Arsenic in ground water in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ. Rev., 9: 189–220.

    Article  CAS  Google Scholar 

  • Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K. 2006. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza, 17: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Nath, TK, Inoe, M. 2008. The upland settlement project of Bangladesh as a means of reducing land degradation and improving rural livelihoods. Small-scale Forestry, 7: 163–182.

    Article  Google Scholar 

  • Nwoko H, Sanginga N. 1999. Department of promiscuous soybean and herbaceous legumes on arbuscular mycorrhizal fungi and their response to bradyrhizobial inoculation in low P soils. Appl Soil Ecol, 13: 251–258.

    Article  Google Scholar 

  • Pawlowska TE, Blaszkowski J, Ruhling A. 1996. The mycorrhizal status of plants colonizing a calamine spoil mound in Southern Poland. Mycorrhiza, 6: 499–505.

    Article  Google Scholar 

  • Phillip JM, Hayman DS. 1970. Improved procedures for clearing roots and statining parasitic and vasicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc, 55: 158–161.

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V. 1983. Growth responses of seasonal plant species to mycorrhizae in a soil of moderate P fertility. I Mycorrhizal dependency under field conditions. Plant and Soil, 70: 199–209.

    Article  CAS  Google Scholar 

  • Prasad K. 2000. Growth responses in Acacia nilotica L. inoculated with Rhizobium and Glomus fasciculatum (AM fungi). J Trop Forestry, 16: 22–27.

    Google Scholar 

  • Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M. 2003. Separation of Leucas aspera, a Medicinal Plant of Bangladesh, Guided by Prostaglandin Inhibitory and Antioxidant Activities. Chem Pharm Bull, 51(5): 595–598.

    Article  CAS  PubMed  Google Scholar 

  • Sanon A, Martin P, Thioulouse J, Plenchette C, Spichigeer R, Lepage M, Duponnois R. 2006. Displacement of an herbaceous plant species community by mycorrhizal and non-mycorrhizal Gmelina arborea, an exotic tree, grown in a microcosm experiment. Mycorrhiza, 16: 125–132.

    Article  PubMed  Google Scholar 

  • Shah AL, Jahiruddin M, Rahman MS, Rashid MA, Ghani MA. 2004. Arsenic contamination in rice and vegetables grown under arsenic contaminated soil and water. In: Shah MAL, et al. (eds), Proc. Workshop on Arsenic in the Water-Soil-Crop Systems, BRRI Publication, 147: 23–38.

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG. 2000. Mechanisms of arsenate resistance in the ericoid mycorrhizal fungus, Hymenoscyphu ericae. Plant Physiology, 124: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ. 1997. Mycorrhizal symbiosis (2nd Edition). San Diego, CA, USA: Academic Press, pp. 605.

    Google Scholar 

  • Snelder DJ, Lasco RD. 2008. Smallholder tree growing in South and Southeast Asia. In: DJ Snelder and RD Lasco (eds), Smallholder Tree Growing for Rural Development and Environmental Services. Netherland: Springer, pp. 3–33.

    Chapter  Google Scholar 

  • Sneller EFC, Van Heerwaarden LM, Kraaijeveld-Smit FJL, Ten-Bookum WM, Koevoets PLM, Schat H, Verkleij JAC. 1999. Toxicity of arsenic in Silene vulgaris, accumulation and degradation of arsenic induced phytochelations. New Phytol, 144: 223–232.

    Article  CAS  Google Scholar 

  • Titus JH, del Moral R. 1998. Vesicular-arbuscular mycorrhizal influence on Mount St. Helens pioneer species in greenhouse experiments. Oikos, 81: 495–510.

    Article  Google Scholar 

  • Trouvelot A, Kough Jl, Gianinazzi-Pearson V. 1986. Measure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant one signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S. (eds), Physiological and Genetical Aspects of Mycorrhizae, Paris: INRA Press, pp. 217–221.

    Google Scholar 

  • Turnau K, Kottke I, Dexheimer J. 1996. Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res, 100: 16–22.

    Article  CAS  Google Scholar 

  • Ultra VUY, Tanaka S, Sakurai K, Iwasaki K. 2007. Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annus L.). Soil Science and Plant Nutrition, 53: 499–508.

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature, 396: 69–72.

    Article  Google Scholar 

  • Vidal MT, Azcon-Aguilar C, Barea JM. 1996. Effects of heavy metals (Zn, Cd and Cu) on arbuscular mycorrhiza formation. In: Azcon-Aguilar C, Barea JM (eds), Mycorrhizas in Integrated Systems: from Genes to Plant Development. Luxembourg: European Commission, pp. 487–490.

    Google Scholar 

  • Walsh LM, Sumner ME, Keeney DR. 1977. Occurrence and distribution of Arsenic in soils and plants. Environmental Health Perspectives, 19: 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Wingfield M, Robison DJ. 2004. Diseases and insect pests of Gmelina arborea: real threats and real opportunities. New Forest, 28(2–3): 227–243.

    Article  Google Scholar 

  • Yan-Chu H. 1994. Arsenic distribution is soils. In: Nriagu JO. (ed), Arsenic in the environment: Part I. Cycling and characterization. New York: John Wiley & Sons, pp. 17–51.

    Google Scholar 

  • Yun-sheng X, Bao-dong C, Peter C, Andrew SF, You-shan W, Xiao-lin Li. 2007. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences, 19: 1245–1251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barua, A., Gupta, S.D., Mridha, M.A.U. et al. Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. Journal of Forestry Research 21, 423–432 (2010). https://doi.org/10.1007/s11676-010-0092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-010-0092-1

Keywords

Navigation