Skip to main content
Log in

A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum

  • Research Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Four pairs of microsatellite molecular polymorphism primers were used to analyse microsatellite fingerprints of 188 seedlings derived from an open-pollinated progeny grafted Eucalyptus globulus breeding arboretum in Victoria, south-eastern Australia. The microsatellite loci chosen for this study were highly polymorphic with the mean number of alleles per locus of 14.25. Individual mothers varied in their outcrosssing rate estimate from 15% to 95%, the overall outcrossing level in the arboretum was 47.9% and the contamination rate was 17.6%. The high selfing level was likely to result in marked inbreeding depression in the performance of open-pollinated seed lots. Open-pollinated seeds collected from such arboreta are not advisable because of its low genetic quality, although such arboreta may be useful for the seed production through large-scale manual pollination or collecting seeds only from trees or genotypes within the arboretum that have high outcrossing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour RC, Potts BM, Vaillancourt RE. 2005. Pollen dispersal from exotic eucalypt plantations. Conservation Genetics, 6: 253–257.

    Article  Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D. 1998. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theoretical and Applied Genetics, 97: 816–827.

    Article  CAS  Google Scholar 

  • Chaix G, Gerber S, Razafimaharo V, et al. 2003. Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theoretical and Applied Genetics, 107: 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Doughty RW. 2000. The Eucalyptus: A natural and commercial history of the gum tree. Baltimore and London: The Johns Hopkins University Press, p225–228.

    Google Scholar 

  • Doyle JJ, Doyle JL. 1990. Extraction of plant DNA from fresh tissue. Focus, 12: 13–15.

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van Wyk G. 1993. Eucalypt Domestication and Breeding. Oxford: Oxford University Press, p332–334.

    Google Scholar 

  • El-Kassaby YA, Ritland K. 1986. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir orchard. Silvae Genetica, 35: 240–244.

    Google Scholar 

  • FAO. Global forest resources assessment 2000-main report. FAO Forestry paper 140, 2000 [2008-03-07]. http://www.fao.org/forestry/fo/fra/main/index.jsp.

  • Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE. 2007. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytologist, 175: 370–380.

    Article  PubMed  Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M. 2003. Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conservation Biology, 17:149–157.

    Article  Google Scholar 

  • Gore PL, Potts BM. 1995. The genetic control of flowering time in Eucalyptus globulus, E. nitens and their F1 hybrids.Proc. In: BM Potts, NMG Borralho, JB Reid, et al. (eds). CRCTHF-IUFRO Conf. Hobart: CRCTHF-IUFRO, pp.241–242.

  • Grattapaglia D, Ribeiro VJ, Rezende GD. 2004. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theoretical Applied Genetics, 109: 192–199.

    Article  CAS  Google Scholar 

  • Griffin AR, Whitemen P, Rudge T, Burgess IP, Moncur Ml. 1993. Effect of paclobutrazol on flower-bud production and vegetative growth in two species of Eucalyptus. Canadian Journal of Forest Research, 23: 630–647.

    Article  Google Scholar 

  • Harbard JL, Griffin AR, Espejo J. 1999. Mass controlled pollination of Eucalyptus globulus: a practical reality. Canadian Journal of Forest Research, 29: 1457–1463.

    Article  Google Scholar 

  • Hardner CM, Potts BM. 1995. Inbreeding depression and changes in variation after selfing Eucalyptus globulus subsp. globulus Silvae Genetica, 44: 46–54.

    Google Scholar 

  • Hardner CM, Vaillancourt RE, Potts BM. 1996a. Stand density influences outcrossing rate and growth of open-pollinated families of Eucalyptus globules. Silvae Genetica, 45: 226–228.

    Google Scholar 

  • Hardner CM, Vaillancourt RE, Potts BM. 1996b. Stand density influences outcrossing rate and growth of open-pollinated families of Eucalyptus globulus. Silvae Genetica, 44: 46–54.

    Google Scholar 

  • Harju AM, Nikkanen T. 1996. Reproductive success of orchard and non-orchard pollens during different stages of pollen shedding in a Scots pine seed orchard. Canadian Journal of Forest Research, 26: 1096–1102.

    Article  Google Scholar 

  • Lai Huanlin, Wang Zhangrong 1997. Comparison of genetic structure between parents and progeny from a Masson Pine seed orchard and a plantation nearby. Forest Scientific Research, 10: 490–494.

    Google Scholar 

  • Lee SL. 2000. Mating system parameters of Dryobalanops aromatica Gaertn. F. (Dipterocarpaceae) in three different forest types and a seed orchard. Heredity, 85: 338–345.

    Article  PubMed  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEBI. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7: 639–655.

    Article  PubMed  CAS  Google Scholar 

  • McGowen MH, Potts BM, Vaillancourt RE, Gore P, Williams DR, Pibeam DJ. 2004a. The genetic control of sexual reproduction in Eucalyptus globulus. In: NMG Borralho, JS Periera, C Marques, J Coutinho, M Madeira, M Tome(eds), Eucalyptus in a changing world. Portugal: Averio, pp.104–108.

    Google Scholar 

  • McGowen MH, Williams DR, Potts BM, Vaillancourt RE. 2004b. Stability of outcrossing rates in Eucalyptus globulus seedlots. Silvae Genetica, 53: 42–44.

    Google Scholar 

  • Megan J, Mervyn S, Robert H, Angela D. 2008. Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genetics & Genomes, 4: 37–47.

    Google Scholar 

  • Moncur MW, Mitchell A, Fripp Y, Kleinschmidt GJ. 1995. The role of honey bees (Apis mellifera) in eucalypt plantation forestry. Commonwealth Forestry Review, 74: 350–354.

    Google Scholar 

  • Moriguchi Y, Taira H, Tsumura Y. 2002. Gene flow of seed orchard in Cryptomeria japonica d.don using microsatellite markers. Plant Animal Genome, 10: 562.

    Google Scholar 

  • Obayashi K, Tsumura Y, Ihara-Ujino T, Niivama K, Tanouchi H, Suyama Y, Washitani I, Lee C, Lee S, Muhammad N. 2002. Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microstatellite DNA analysis. International Journal of Plant Sciences, 163: 151–158.

    Article  CAS  Google Scholar 

  • Pakkanen A, Nikkanen T, Pulkkinen P. 2000. Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scandanavian Journal of Forest Research, 15: 399–404.

    Article  Google Scholar 

  • Patterson B, Peter G, Potts B, et al. 2004a. Advances in pollination techniques for large-scale seed production in Eucalyptus globulus. Australian Journal of Botany, 52: 781–787.

    Article  Google Scholar 

  • Patterson B, Vaillancourt RE, Pilbeam D, Potts BM. 2004b. Factors affecting variation in outcrossing rate in Eucalyptus globulus. Australian Journal of Botany, 52: 773–780.

    Article  Google Scholar 

  • Patterson B, Vaillancourt R, Potts B. 2001. Eucalypt seed collectors: beware of sampling seedlots from low in the canopy. Australian Forestry, 64: 139–142.

    Google Scholar 

  • Potts BM, Vaillancourt RE, Jordan G, Dutkouski G, Silva J, Mckinnon G, Steane D, Volker P, Lopez G, Apiolaza L, Li Y, Marques C, Borralho N. 2004. Exploration of the Eucalyptus globulus gene pool. In: N Borralho, JS Pereira, C Marques, J Cotinho, M Madeira, M Tome (eds). Eucalyptus in a changing world. Portugal: Aveiro, pp.46–61.

    Google Scholar 

  • Potts B, McGowen M, Williams D. 2007. Advances in reproductive biology and seed production systems of Eucalyptus: The case of Eucalyptus globulus. In: Book of abstracts of IUFRO conference-Eucalypts and Diversity: Balancing Productivity and Sustainabilty, Durban, South Africa, pp.22–26.

  • Pound LM, Wallwork MAB, Potts BM, Sedgley M. 2002a. Early ovule development following self-and cross-pollinations in Eucalyptus globulus Labill. ssp. globulus. Annals of Botany, 89: 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Pound LM, Wallwork MAB, Potts BM, Sedgley M. 2002b. Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 50: 365–372.

    Article  Google Scholar 

  • Russell J, Marshall D, Griffin R, Harbard J, Powell W. 2001.Gene flow in South American Eucalyptus grandis and Eucalyptus globulus seed orchards. In: TUFRO symposium-developing the eucalypt of the future. Chile, Valdivia: pp.149–150.

  • Slate J, Marshall TC, Pemberton JM. 2000. A retrospective assessment of the accuracy of the paternity inference program Cervus. Molecular Ecology, 9: 801–808.

    Article  PubMed  CAS  Google Scholar 

  • Steane DA, Vaillancourt RE, Russell J, Powell W, Marshall D, Potts BM. 2001. Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae). Silvae Genetica, 50: 89–91.

    Google Scholar 

  • Yang Minsheng, Wu Zhihua, Chen Shaoxiong. 2006. Ecological Effect of Eucalyptus Forest and Its Ecological Forest Management. Eucalypt Science & Technology, 23: 32–39.

    Article  Google Scholar 

  • Zang D, Wang H, You Y. 1995. Performance and selection of a 4-year Eucalyptus globulus seedling seed orchard in Yunnan, China. In: B.M. Potts, N.M.G. Borralho, J.B. Reid et al. (eds), Eucalypt Plantations: Improving Fibre Yield and Quality. Hobart, Tasmania: Proc. CRCTHF-IUFRO, pp.226–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xin Rao.

Additional information

Foundation items: This study was supported by State Administration of Foreign Experts Affairs, P. R. China (No.2001430007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, Hx., Patterson, B., Potts, B. et al. A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum. Journal of Forestry Research 19, 136–140 (2008). https://doi.org/10.1007/s11676-008-0023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-008-0023-6

Keywords

Navigation