Skip to main content
Log in

Establishment of genetic transformation system via Agrobacterium in tall fescue cultivar

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Tall fescue (Festuca arundinacea Schreb.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable, and repeatable approach in transforming the grass using Agrobacterium (EHA105), where β-glucuronidase gene (uidA) was used as a reporter and hygromycin phosphotransferase gene (hyg) as a selectable marker. An effective expression of transgene was observed in transforming 2-month-old calli derived from mature seeds (cv. Bingo) cultured on MS medium supplemented with 9 mg·L−1 2, 4-D. A two-step solid medium selection with increasing hygromycin concentration (from 30 to 50 mg·L−1) was used to obtain resistant calli. Transgenic plants have been produced from many independent transformed calli. The presence of functional β-glucuronidase gene (uidA) was detected in hygromycin-resistant calli. Transgenic plants were regenerated and PCR and Southern blot confirmed transgene integration in the tall fescue genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arencibia, A.D., Carmona, E.R., Tellez, P., et al. 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens [J]. Transgenic Research, 7: 213–222.

    Article  CAS  Google Scholar 

  • Bai, Y., Qu, R.A. 2000. Evaluation of callus induction and plant regeneration in twenty-five turf-type tall fescuecultivars [J]. Grass and forage science, 55: 326–330.

    Article  Google Scholar 

  • Bai, Y. 2001. Tissue culture and genetic transformation of tall fescue (Ph.D. thesis) [D]. Bell and Howell Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA.

    Google Scholar 

  • Bettany, A.J.E., Dalton, S.J., Timms, E., et al. 2003. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.) [J]. Plant Cell Report, 21: 437–444.

    CAS  Google Scholar 

  • Bettany, A.J.E., Dalton, S.J., Timms, E., et al. 1998. Stability of transgene expression during vegetative propagation of protoplast derived tall fescue (Festuca arundinacea Schreb.) plants [J]. Journal Experimental Botany, 49: 1797–1804.

    Article  CAS  Google Scholar 

  • Birch, R.G. 1997. Plant transformation: problems and strategies for practical application [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 48: 297–326.

    Article  PubMed  CAS  Google Scholar 

  • Breen, J.P. 1993a. Enhanced resistance to fall armyworm in Acremonium endophyte-infected turfgrasses [J]. Journal of Economic Entomology, 86: 621–629.

    Google Scholar 

  • Breen, J.P. 1993b. Enhanced resistance to three species of aphids (Homoptera: Aphididae) in Acremonium endophyte-infected turfgrasses [J]. Journal of Economic Entomology, 86: 1279–1285

    Google Scholar 

  • Buckner, R.C., Powell, J.B., Frakes, R.V. 1979. Historical development. In: Buckner, R.C. and Bush, L.P. (eds.) Tall Fescue [M]. Madison, WI, USA: American Society of Agronomy, pp1–8.

    Google Scholar 

  • Cheng, M., Fry, J.E., Pang, S., et al. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens [J]. Plant Physiology, 115: 971–980.

    PubMed  CAS  Google Scholar 

  • Chilton, M.D., Curier, T.C., Farrand, S.K., et al. 1974. Agrobacterium trmefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors [J]. Proceedings of the National Academy of Sciences USA, 71: 3672–3676.

    Article  CAS  Google Scholar 

  • Cho, M.J., Ha, C.D., Lemaux, P.G. 2000. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues [J]. Plant Cell Report, 19: 1084–1089.

    Article  CAS  Google Scholar 

  • Dalton, S.J., Bettany, A.J.E., Timms, E., et al. 1995. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.) [J]. Plant Science, 108: 63–70.

    Article  CAS  Google Scholar 

  • Dalton, S.J., Bettany, A.J.E., Timms, E., et al. 1998. Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibremediated transformation of cell suspension cultures [J]. Plant Science, 132: 31–43.

    Article  CAS  Google Scholar 

  • Ha, S.B., Wu, F.S., Thorne, T.K. 1992. Transgenic turf-type tall fescue Festuca-arundinacea Schreb. Plants regenerated from protoplasts [J]. Plant Cell Report, 11: 601–604.

    CAS  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., et al. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant Journal, 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, Y., Saito, H., Ohta, S., et al. 1996. High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens [J]. Nature Biotechnology, 4: 745–750.

    Article  Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimerical genes in plant: The GUS gene fusion system [J]. Plant Molecular Biology Report, 5: 387–405.

    CAS  Google Scholar 

  • Kearney, J.F., Parrott, W.A., Hill, N.S. 1991. Infection of somatic embryos of tall fescue with Acremonium coenophialum [J]. Crop Science, 31: 979–984.

    Article  Google Scholar 

  • Klein, T.M., Gradziel, T., Fromm, M.E., et al. 1988. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles [J]. Bio/Technology, 6: 559–563.

    Article  CAS  Google Scholar 

  • Krans, J.V. 1989. Biotechnology advances in turfgrass. In: Takatoh, H. (ed.) Proc. Int. Turfgrass Res. Conf., 6th (Tokyo)[M]. Int. Turfgrass Soc. and Jpns. Soc. Turfgrass Science. pp11–15.

  • Kuai, B., Morris, P. 1995. The physiological state of suspension cultured cells affects the expression of the glucuronidase gene following transformation of tall fescue (Festuca arundinacea) protoplasts [J]. Plant Science, 110: 235–247.

    Article  CAS  Google Scholar 

  • Latch, G.C.M., Christensen, M.J. 1985. Artificial infections of grasses with endophytes [J]. Annual Applied Biology, 107: 17–24.

    Article  Google Scholar 

  • Murashige, T., Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiology Plant, 15: 473–497.

    Article  CAS  Google Scholar 

  • National Turfgrass Evaluation Program (NTEP). 1997. National Tall Fescue Test-1992. Final Report 1993–1995. NTEP No. 96-13. Beltsville, MD: USDA-ARS.

    Google Scholar 

  • Potrykus, I. 1990. Gene transfer to cereals: an assessment [J]. Bio/Technology, 8: 535–542

    Article  CAS  Google Scholar 

  • Qian Haifeng, Xue Qingzhong. 2002. The effect of hormones on callus induction and plantlet regeneration of tall fescue (Festuca arundinacea) [J]. Grassland of China, 1: 46–50. (in Chinese)

    Google Scholar 

  • Qian, H.F., Zhang, X.Y., Xue, Q.Z. 2004. Factors affecting the callus induction and GUS transient expression in indica rice Pei’ai64s [J]. Pakistan Journal Biology Science, 7: 615–619.

    Google Scholar 

  • Siegel, M.R. 1987. Fungal endophytes of grasses [J]. Annual Review Phytopathology, 25: 293–315.

    Article  Google Scholar 

  • Spangenberg, G., Wang, Z.Y., Nagel, J., et al. 1994. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.) [J]. Plant Science, 97: 83–94.

    Article  CAS  Google Scholar 

  • Spangenberg, G., Wang, Z.Y., Wu, X.L., et al. 1995. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenicvsuspension cells [J]. J. Plant Physiology, 145: 693–701.

    CAS  Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., et al. 1997. Agrobacteriumtumefaciens-mediated barley transformation [J]. Plant Journal, 11: 1369–1376.

    Article  CAS  Google Scholar 

  • Trifonova, A., Madsen, S., Olesen, A. 2001. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions [J]. Plant Science, 162: 871–880.

    Article  Google Scholar 

  • Tuite, J. 1969. Plant pathological methods [M]. Burgess Publ. Co., Minneapolis.

    Google Scholar 

  • Wang, Z.Y., Takamizo, T., Iglesi, V.A., et al. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts [J]. Bio/Technology, 10: 691–696.

  • Wilkie, S. 1997. Isolation of total genomic DNA. In: Clark, M.S. (Ed.), Plant Molecular Biology—A Laboratory annual [M]. Springer-Verlag Berlin: p3–15

    Google Scholar 

  • Zhao, Z.Y., Cai, T., Tagliani, L., et al. 2000. Agrobacterium-mediated sorghum transformation [J]. Plant Molecular Biology, 44: 789–798.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Hai-feng.

Additional information

Foundation project: This paper was supported by Zhejiang Provincial Science and Technology Plan of China (Grant No. 2003C30053) and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y504076).

Biography: QIAN Hai-feng (1973–), male, Ph.D., associate professor in Zhejiang University of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Hf., Ali, S., Hong, L. et al. Establishment of genetic transformation system via Agrobacterium in tall fescue cultivar. J. of For. Res. 17, 238–242 (2006). https://doi.org/10.1007/s11676-006-0054-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-006-0054-9

Key words

CLC number

Navigation