Abstract
The friction and shear strength of nanowire (NW)–substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09–0.12 and 0.10–0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134–139 MPa and 78.9–95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW–substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.
Introduction
In nanodevices, nanowires (NWs) are typically integrated to larger structures. The NW–substrate interfaces therefore play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small [1, 2]. Such interfaces include two configurations, NW length or NW tip in contact with the substrate, and both configurations have a wide range of applications. For example, the tip-substrate contacts are present in nanogenerators [3], nanostructured solar cells [4], atomic force microscopy (AFM) with carbon nanotube (CNT) tips [5], CNT tapes [6] and many other nanodevices. Indeed, as recently outlined by Wang [7], one critical future direction for nanogenerator research is study of the NW–metal interface to build a robust, low wearing structure for improving the device lifetime.
Experimental work on NW interfacial mechanics has been limited so far due to experimental challenges at the nanoscale [8] and the fact that many existing tribology tools such as AFM, surface force apparatus (SFA), quartz microbalance and microfabricated devices cannot be readily applied [9, 10]. Static friction force between NWs (including CNTs) and substrates was estimated from the highly deformed shapes of NWs [11]. Recently CNTs were found to slip on silicon oxide surface at a lateral force of 8 nN [12], and ZnO NWs to slip on silicon surface at a few μN [13]. However, the above studies on friction are only limited to the configuration of NW length in contact with a substrate. To the best of our knowledge, no experiments have been reported to investigate the configuration of individual NW tip in contact with a substrate.
Here we report the first experimental study on the friction between NW tips (ends) and a substrate. Silver and ZnO NWs in contact with a gold-coated substrate were studied as model systems in view that silver and ZnO NWs have very different tip shapes. Silver NW is an important class of metallic NWs because of its potential use as interconnects in view that bulk silver exhibit very high electric and thermal conductivity [14]. ZnO is one of the most important semiconductor NWs with a broad range of applications including nanogenerators, biosensors, nanolasers and nanoelectromechanical systems (NEMS) [15]. The friction measurements reported in the present article were enabled by an innovative experimental method based on column buckling theory. The experiments were conducted in situ inside a scanning electron microscope (SEM) using a nanomanipulator as the actuator and an AFM cantilever as the force sensor.
Experimental
The silver NWs were synthesised using a seed-assisted, solution-phase method with a fivefold twin structure [16]. Figure 1a is a transmission electron microscopy (TEM) image showing the NW tip. Figure 1b and 1c are high-resolution TEM images showing a layer of silver oxide with varying thickness on the NW surface. The ZnO NWs were synthesised using the vapour–liquid–solid (VLS) method with a wurtzite structure and growth direction of [0001] [17]. Figure 1d is a SEM image showing the tip of a ZnO NW, which appears to be flat.
In situ SEM buckling tests of NWs were conducted as shown in Fig. 2. A nanomanipulator (Klocke Nanotechnik, Germany) that possesses 1 nm resolution in three orthogonal directions was used to pick up individual NWs [18, 19]. A NW was clamped onto the tungsten tip on the nanomanipulator using electron beam-induced deposition (EBID) of carbon. Then the NW was approached to make contact with an AFM cantilever (OBL-10, Veeco). Carbon deposition was not used at the NW–cantilever interface. Compressive force was applied to the NW by the nanomanipulator movement, which led to buckling of the NW. In this case, the boundary condition was fixed-pinned. Continued loading further changed the postbuckling shape of the NW until sliding occurred at the NW–cantilever interface.
After buckling of the NW, there exist two forces at the NW–substrate interface, a compressive (normal) force and a frictional (lateral) force. The compressive force on the NW can be easily measured from the deflection of the AFM cantilever; however, it is not trivial to measure the friction force. Below we describe a method to measure friction force based on the buckling theory. Free-body diagram of a buckled member under fixed-pinned boundary condition is shown in Fig. 3a, with the left end fixed and the right end pinned. A small lateral deflection gives rise to a moment M at the fixed end and shear force (friction force)F at each end of the member. From the moment balance, it can be easily obtained that, where L is the length of the member. The governing equation at a section with a distance x from the right end is given by

where,E is the Young’s modulus and I is the moment of inertia. The solution to Eq. 1is

a Free-body diagram of a buckled column with fixed-pinned boundary condition. Right end is the NW-substrate interface. b Nonlinear least squares fitting of Eq. 3to digitized shape of a NW prior to sliding
Taking into account the fixed-pinned boundary condition, we obtain

Equation 3describes the shape of the member in the postbuckling stage. Details on the equation derivation can be found elsewhere [20]. Eq. 3 provides the theoretical basis of our method to measure the friction force. By fitting the observed shape of the NW just prior to sliding to Eq. 3 using the nonlinear least squares method, M can be determined since P is measured from the deflection of the AFM cantilever. Then F can be obtained using F = M/L. Figure 3b shows the fitting of a deformed NW to Eq. 3. Clearly the agreement is very good.
Results and Discussion
Following the method described above, three silver NWs and three ZnO NWs were tested for friction measurements. The Amonton–Coulomb friction law is written as F = μP, where μ is the so-called coefficient of friction. The normal force, friction force and coefficient of friction for all six NWs are listed in Table 1. Note that these NWs did not break in the buckling experiments so that each NW was tested multiple times with very good repeatability. However, the Amonton–Coulomb law was obtained from empirical observations with many counterexamples; for instance, geckos are able to move on walls and ceilings when P ≤ 0. A more fundamental friction law that links friction and adhesion was proposed by Bowden and Tabor [21],

where τ is the interfacial shear strength and A is the true contact area. This law has been supported by numerous SFA and AFM experiments [10]. The two theories were reconciled by considering the multiple asperities among the contacting surfaces [22]; as a result the true contact area is typically proportional to the normal force.
The NW–substrate contact is treated as the single-asperity contact because the NW diameters are smaller than the wavelength of the substrate topography. In order to evaluate interfacial shear strength using Eq. 4, the true contact area must be determined. In our experiments as well as AFM experiments, the true contact area is calculated using continuum mechanics models. The well-known Hertzian model does not take into account attractive adhesion forces between the contacting surfaces. Other widely accepted models that take adhesion force into account are due to Johnson, Kendall, and Roberts (JKR) [23], Derjaguin, Mutter, Toporov (DMT) [24] and Maugis [25], respectively.
For simplicity, the continuum models typically assume the contact between a sphere and a flat surface. It is known that the JKR and DMT theories are two extremes of a spectrum of elastic solutions determined by the Tabor parameter [26], which is given by

where R is the radius of the sphere, K is the reduced modulus of two materials with E1 and E2 the respective Young’s moduli, and ν1 and ν2 the respective Poisson’s ratios, z0 is the interatomic equilibrium distance (=0.2 nm), γ is the interfacial energy per unit area (work of adhesion). Each NW tip was fitted with a sphere. When μ > 5, the JKR model is valid; when μ < 0.1, the DMT model should be applied; in the intermediate range, the Maugis model becomes appropriate. In all our experiments 2.05 < μ < 2.39 (see Table 2), so the Maugis model should be used. However, the Maugis model does not have an explicit expression for contact radius. For the Tabor parameter in this range, the JKR model was found to approximate the Maugis solution very closely [27], therefore the JKR model was used in our calculation due to its explicitness.
Following the Hertz and JKR models, the contact radius a as a function of the externally applied load P is given by


respectively, wherewith γ1 and γ2 the respective surface energy and γ12 the interface energy. γ1 = 1.37 J/m2 for gold, γ2 = 0.8 J/m2 for silver oxide [28] and γ2 = 1.74 J/m2 for ZnO with {0001} surface [29]. Therefore, γ = 2.09 J/m2 and γ = 3.09 J/m2 for the contacts between gold and silver oxide and between gold and ZnO, respectively. In addition, Egold = 78 GPa, Esilver = 84 GPa, EZnO = 140 GPa,
[30]. The contact radius, contact pressure and interfacial shear strength calculated using the two models are listed in Table 2. It can be seen that the interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate are 134–139 MPa and 78.9–95.3 MPa, respectively, according to the JKR model. These values are in good agreement with those obtained from AFM and mesoscale friction tester in similar environment (vacuum or dry) [31].
Several issues related to the experiments and data analyses are discussed. First of all, our measurements showed that no metallic bonding formed between silver NWs and the gold substrate as the strength of metallic bonding is typically on the order of GPa [32]. This is due to the presence of a thin layer of silver oxide, as shown in the high-resolution TEM images (Figure 1). Second, it is not appropriate to treat the ZnO NWs as the molecular junctions where the contact areas remain constant (in our case the NW cross-sections) [33], otherwise the interfacial shear strength would be too small. This is reasonable because it is very likely that the NW is not perfectly perpendicular to the substrate. Edge of the NW tip could be in contact with the substrate, and the contact area can then be approximately fitted with a sphere. Third, previous experiments showed that electron beam increases adhesion force between semiconductors and metals [34, 35]. For contacts between ZnO NW tips and a gold substrate, we found the adhesion force did not show noticeable change when the contact area was exposed to electron beam only for a short time (e.g., less than 10 s) [36]. Last, although our experimental method gave rise to the first measurement of the friction data between NW tips and a substrate, we are aware that it cannot measure the friction as a function of the progressively applied normal force. MEMS devices with simultaneous normal and lateral force measurement capability are under development to address this issue.
Our results on interfacial friction and shear strength could have direct implication on the AFM three-point bending tests that are widely used in extracting mechanical properties of one-dimensional nanostructures including CNTs and NWs [37, 38]. Often the adhesion between the NWs and the substrate is assumed to be strong enough to provide a fixed–fixed boundary condition for the three-point bending tests. The assumption is valid for NWs with small diameters; but for those with large diameters, it could lead to large data scatter as typically observed in experiments. Our results could be incorporated into data reduction in the three-point bending experiments to quantify the influence of adhesion and friction on the measured mechanical properties. Other methods that could also be used to eliminate the ambiguity caused by the NW–substrate friction in the three-point bending tests include EBID of platinum or carbon to reinforce the clamps [39].
Conclusions
In summary, a new experimental method to measure the friction between a NW tip and a substrate has been developed. Silver and ZnO NWs were tested with a gold-coated surface as the substrate. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to range from 0.09 to 0.12 and from 0.10 to 0.15, respectively. The adhesion between NWs and the substrate substantially modified the true contact area, which in turn affected the interfacial shear strength significantly. According to the calculated Tabor parameter, the JKR model was selected to approximately calculate the contact area and the interfacial shear strength. The interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate ranged from 134 to 139 MPa and from 78.9 to 95.3 MPa, respectively. These values are in good agreement with previous results obtained in similar environment (vacuum or dry) [31].
References
Lu W, Lieber CM: Semiconductor nanowires. J. Phys. D Appl. Phys. 2006,39(21):R387-R406. COI number [1:CAS:528:DC%2BD28Xht1GrtrrO]; Bibcode number [2006JPhD...39R.387L] 10.1088/0022-3727/39/21/R01
Patolsky F, Lieber CM: Nanowires nanosensors. Mater. Today 2005, 8: 20–28. COI number [1:CAS:528:DC%2BD2MXjs1KqtLw%3D] 10.1016/S1369-7021(05)00791-1
Wang ZL, Song JH: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312(5771):242–246. COI number [1:CAS:528:DC%2BD28XjtlKqu7g%3D]; Bibcode number [2006Sci...312..242W] 10.1126/science.1124005
Law M, Greene LE, Johnson JC, Saykally R, Yang PD: Nanowire dye-sensitized solar cells. Nat Mater 2005,4(6):455–459. COI number [1:CAS:528:DC%2BD2MXks1Cit7o%3D]; Bibcode number [2005NatMa...4..455L] 10.1038/nmat1387
Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE: Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996,384(6605):147–150. COI number [1:CAS:528:DyaK28XmvFGhs7s%3D]; Bibcode number [1996Natur.384..147D] 10.1038/384147a0
Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A: Carbon nanotube-based synthetic gecko tapes. Proc. Natl Acad. Sci. USA 2007,104(26):10792–10795. COI number [1:CAS:528:DC%2BD2sXnsV2ltbw%3D]; Bibcode number [2007PNAS..10410792G] 10.1073/pnas.0703505104
Wang ZL: Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008,18(22):3553–3567. COI number [1:CAS:528:DC%2BD1cXhsVyqu77M] 10.1002/adfm.200800541
Falvo MR, Superfine R: Mechanics and friction at the nanometer scale. J. Nanopart. Res. 2000, 2: 237–248. 10.1023/A:1010017130136
Corwin AD, de Boer MP: Effect of adhesion on dynamic and static friction in surface micromachining. Appl. Phys. Lett. 2004,84(13):2451–2453. COI number [1:CAS:528:DC%2BD2cXis1Wmu7Y%3D]; Bibcode number [2004ApPhL..84.2451C] 10.1063/1.1691198
Carpick RW, Salmeron M: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 1997,97(4):1163–1194. COI number [1:CAS:528:DyaK2sXjsFWis7w%3D] 10.1021/cr960068q
Conache G, Gray SM, Ribayrol A, Froberg LE, Samuelson L, Pettersson H, Montelius L: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 2009,5(2):203–207. COI number [1:CAS:528:DC%2BD1MXhvVWls7k%3D] 10.1002/smll.200800794
Whittaker JD, Minot ED, Tanenbaum DM, McEuen PL, Davis RC: Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate. Nano Lett. 2006,6(5):953–957. COI number [1:CAS:528:DC%2BD28XjsFWmtbs%3D]; Bibcode number [2006NanoL...6..953W] 10.1021/nl060018t
Manoharan MP, Haque MA: Role of adhesion in shear strength of nanowire-substrate interfaces. J. Phys. D Appl. Phys. 2009,42(9):095304.
Sun YG, Mayers B, Herricks T, Xia YN: Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003,3(7):955–960. COI number [1:CAS:528:DC%2BD3sXksVSjtrc%3D]; Bibcode number [2003NanoL...3..955S] 10.1021/nl034312m
Wang ZL: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 2004,16(25):R829-R858. COI number [1:CAS:528:DC%2BD2cXmtVyhtLY%3D]; Bibcode number [2004JPCM...16R.829W] 10.1088/0953-8984/16/25/R01
Fan FR, Ding Y, Liu DY, Tian ZQ, Wang ZL: Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc 2009,131(34):12036–12037. 10.1021/ja9036324
Soudi A, Khan EH, Dickinson JT, Gu Y: Observation of unintentionally incorporated nitrogen-related complexes in ZnO and GaN nanowires. Nano Lett 2009,9(5):1844–1849. 10.1021/nl803830n
Zhu Y, Espinosa HD: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl Acad. Sci. USA 2005,102(41):14503–14508. COI number [1:CAS:528:DC%2BD2MXhtFKjsLnK]; Bibcode number [2005PNAS..10214503Z] 10.1073/pnas.0506544102
Zhu Y, Xu F, Qin QQ, Fung WY, Lu W: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. ASAP 2009,9(11):3934–3939. 10.1021/nl902132w
Chajes A: Principles of Structural Stability Theory. Prentice-Hall, Englewood Cliffs, NJ; 1974.
Bowden FP, Tabor D: The Friction and Lubrication of Solids. Oxford University Press, Oxford, UK; 1954.
Greenwood JA, Williams JBP: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 1966,295(1442):300. COI number [1:CAS:528:DyaF2sXht1ChsA%3D%3D]; Bibcode number [1966RSPSA.295..300G] 10.1098/rspa.1966.0242
Johnson KL, Kendall K, Roberts AD: Surface energy and contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971,324(1558):301. COI number [1:CAS:528:DyaE3MXkvFWmtrY%3D]; Bibcode number [1971RSPSA.324..301J] 10.1098/rspa.1971.0141
Derjaguin BV, Muller VM, Toporov YP: Effect of contact deformations on adhesion of particles. J. Colloid Interface Sci. 1975,53(2):314–326. COI number [1:CAS:528:DC%2BD1MXhtlGhtLrE] 10.1016/0021-9797(75)90018-1
Maugis D: Adhesion of spheres—the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 1992,150(1):243–269. COI number [1:CAS:528:DyaK38XhvVaiu7s%3D] 10.1016/0021-9797(92)90285-T
Tabor D: Surface forces and surface interactions. J. Colloid Interface Sci. 1977,58(1):2–13. COI number [1:CAS:528:DyaE1MXht1Onsw%3D%3D] 10.1016/0021-9797(77)90366-6
Carpick RW, Ogletree DF, Salmeron M: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 1999,211(2):395–400. COI number [1:CAS:528:DyaK1MXhtlCis78%3D] 10.1006/jcis.1998.6027
Israelachvili JN: Intermolecular and Surface Forces. Academic Press, Amsterdam; 1991.
Kim M, Hong YJ, Yoo J, Yi GC, Park GS, Kong KJ, Chang H: Surface morphology and growth mechanism of catalyst-free ZnO and MgxZn1−xO nanorods. Phys. Status Solidi-Rapid Res. Lett. 2008,2(5):197–199. COI number [1:CAS:528:DC%2BD1cXhsVSnu7nL] 10.1002/pssr.200802084
Lucas M, Mai W, Yang R, Wang ZL, Riedo E: Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 2007,7(5):1314–1317. COI number [1:CAS:528:DC%2BD2sXktlChsLc%3D]; Bibcode number [2007NanoL...7.1314L] 10.1021/nl070310g
Xu DW, Ravi-Chandar K, Liechti KA: On scale dependence in friction: transition from intimate to monolayer-lubricated contact. J. Colloid Interface Sci. 2008,318(2):507–519. COI number [1:CAS:528:DC%2BD1cXhtFalug%3D%3D] 10.1016/j.jcis.2007.09.086
Bhushan B: Nanotribology and Nanomechanics: An Introduction. Heidelberg, Springer; 2008.
Li QY, Kim KS: Micromechanics of friction: effects of nanometre-scale roughness. Proc. R. Soc. Lond. A Math. Phys. Sci. 2008,464(2093):1319–1343. Bibcode number [2008RSPSA.464.1319L] Bibcode number [2008RSPSA.464.1319L] 10.1098/rspa.2007.0364
Miyazaki HT, Tomizawa Y, Saito S, Sato T, Shinya N: Adhesion of micrometer-sized polymer particles under a scanning electron microscope. J. Appl. Phys. 2000,88(6):3330–3340. COI number [1:CAS:528:DC%2BD3cXmt1aqsb8%3D]; Bibcode number [2000JAP....88.3330M] 10.1063/1.1288006
Ding WQ: Micro/nano-particle manipulation and adhesion studies. J. Adhesion Sci. Technol. 2008,22(5–6):457–480. COI number [1:CAS:528:DC%2BD1cXps1OjtLk%3D] 10.1163/156856108X295563
Qin QQ, Xu F, Zhu Y: Adhesion between zinc oxide nanowires and gold coated surfaces. J. Appl. Phys 2009. submitted submitted
Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999,82(5):944–947. COI number [1:CAS:528:DyaK1MXotV2itw%3D%3D]; Bibcode number [1999PhRvL..82..944S] 10.1103/PhysRevLett.82.944
Ni H, Li XD, Gao HS: Elastic modulus of amorphous SiO 2 nanowires. Appl. Phys. Lett. 2006, 88: 043108. 10.1063/1.2165275
Zhu Y, Ke C, Espinosa HD: Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp. Mech. 2007,47(1):7–24. 10.1007/s11340-006-0406-6
Acknowledgement
This work was supported by the National Science Foundation under Award No. CMMI-0826341 and the Faculty Research and Professional Development Fund from North Carolina State University. We thank to Fengru Fan and Afsoon Soudi for kindly providing the NW samples.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Zhu, Y., Qin, Q., Gu, Y. et al. Friction and Shear Strength at the Nanowire–Substrate Interfaces. Nanoscale Res Lett 5, 291 (2010). https://doi.org/10.1007/s11671-009-9478-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11671-009-9478-4