Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

  • Derrick Mott
  • Jin Luo
  • Andrew Smith
  • Peter N. Njoki
  • Lingyan Wang
  • Chuan-Jian Zhong
Open Access
Nano Express


We report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.


Gold-Platinum nanoparticles Nanocrystal alloy Surface binding sites Bimetallic composition 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

(See supplementary material 1)



This work was supported in part by the National Science Foundation (CHE 0316322), the Petroleum Research Fund administered by the American Chemical Society (40253-AC5M), and the GROW Program of World Gold Council. We also thank Dr. H. R. Naslund for DCP-AES analysis, and Dr. V. Petkov for XRD analysis.

Supplementary material

11671_2006_9022_MOESM1_ESM.doc (117 kb)
Electronic Supplementary Material: Supplementary material is available to authorised users in the online version of this article at (DOC 117 KB)


  1. 1.
    Wang GF, Van Hove MA, Ross PN, Baskes MI: Prog. Surf. Sci.. 2005, 79: 28. COI number [1:CAS:528:DC%2BD2MXht1Shu7nP]Google Scholar
  2. 2.
    Hsu PJ, Lai SK: J. Chem. Phys.. 2006, 124: 44711. COI number [1:STN:280:DC%2BD28%2Fns1SgtQ%3D%3D], 10.1063/1.2147159CrossRefGoogle Scholar
  3. 3.
    Haruta M: Nature. 2005, 437: 1098. COI number [1:CAS:528:DC%2BD2MXhtFaht7fN], 10.1038/4371098aCrossRefGoogle Scholar
  4. 4.
    (a) J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L. Wang, P.Njoki, D. Mott, Y. Lin, C.J. Zhong, Chem. Mater. 17, 3086(2005) (b) Catalysis by Metals and Alloys, V. Ponec and G.C. Bond, (Ed.) Elsevier, 1995aGoogle Scholar
  5. 5.
    Kim CS, Korzeniewski C: Anal. Chem.. 1997, 69: 2349. COI number [1:CAS:528:DyaK2sXjsVOitrg%3D], 10.1021/ac961306kCrossRefGoogle Scholar
  6. 6.
    Chen MS, Kumar D, Yi C-W, Goodman DW: Science. 2005, 310: 291. COI number [1:CAS:528:DC%2BD2MXhtV2hurrL], 10.1126/science.1115800CrossRefGoogle Scholar
  7. 7.
    Mihut C, Descorme C, Duprez D, Amiridis M: J. Catal.. 2002, 212: 125. COI number [1:CAS:528:DC%2BD38XovFShsrc%3D], 10.1006/jcat.2002.3770CrossRefGoogle Scholar
  8. 8.
    Lang H, Maldonado S, Stevenson KJ, Chandler BD: J. Am. Chem. Soc.. 2004, 126: 12949. COI number [1:CAS:528:DC%2BD2cXnslGqt7o%3D], 10.1021/ja046542oCrossRefGoogle Scholar
  9. 9.
    Luo J, Jones VW, Maye MM, Han L, Kariuki NN, Zhong CJ: J. Am. Chem. Soc.. 2002, 124: 13988. COI number [1:CAS:528:DC%2BD38XotlGjsr4%3D], 10.1021/ja028285yCrossRefGoogle Scholar
  10. 10.
    Luo J, Njoki P, Lin Y, Wang L, Mott D, Zhong CJ: Electrochem. Comm.. 2006, 8: 581. COI number [1:CAS:528:DC%2BD28XjtFSksLw%3D], 10.1016/j.elecom.2006.02.001CrossRefGoogle Scholar
  11. 11.
    Luo J, Njoki P, Lin Y, Mott D, Wang L, Zhong CJ: Langmuir. 2006, 22: 2892. COI number [1:CAS:528:DC%2BD28Xhtleru7w%3D], 10.1021/la0529557CrossRefGoogle Scholar
  12. 12.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R.J.Whyman, Chem. Soc. Chem. Commun., 1994, 801Google Scholar
  13. 13.
    Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter MD, Murray RW: J. Am. Chem. Soc.. 1998, 120: 9396. COI number [1:CAS:528:DyaK1cXls12nu7c%3D], 10.1021/ja981454nCrossRefGoogle Scholar
  14. 14.
    Meier DC, Goodman DW: J. Am. Chem. Soc.. 2004, 126: 1892. COI number [1:CAS:528:DC%2BD2cXmtFalug%3D%3D], 10.1021/ja030359yCrossRefGoogle Scholar
  15. 15.
    J.E. Bailie, G.J. Hutchings, Chem. Commun. 12151, (1999)Google Scholar
  16. 16.
    Pedersen MØ, Helveg S, Ruban A, Stensgaard I, Laegsgaard E, NØrskov JK, Besenbacher F: Surf. Sci.. 1999, 426: 395. COI number [1:CAS:528:DyaK1MXktFCit70%3D], 10.1016/S0039-6028(99)00385-4CrossRefGoogle Scholar
  17. 17.
    Sachtler JWA, Somorjai GA: J. Catal.. 1983, 81: 77. COI number [1:CAS:528:DyaL3sXkt1WrtLY%3D], 10.1016/0021-9517(83)90148-3CrossRefGoogle Scholar
  18. 18.
    Ge Q, Song C, Wang L: Comp. Mater. Sci.. 2006, 35: 247. COI number [1:CAS:528:DC%2BD2MXht1Oitr3E], 10.1016/j.commatsci.2005.05.003CrossRefGoogle Scholar
  19. 19.
    Song C, Ge Q, Wang L: J. Phys. Chem. B. 2005, 109: 22341. COI number [1:CAS:528:DC%2BD2MXhtFOisLjP], 10.1021/jp0546709CrossRefGoogle Scholar

Copyright information

© to the authors 2006

Authors and Affiliations

  • Derrick Mott
    • 1
  • Jin Luo
    • 1
  • Andrew Smith
    • 1
  • Peter N. Njoki
    • 1
  • Lingyan Wang
    • 1
  • Chuan-Jian Zhong
    • 1
  1. 1.Department of ChemistryState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations