Abstract
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
References
Reed MA, et al.: Phys. Rev. Lett.. 1988, 60: 535. COI number [1:CAS:528:DyaL1cXitFSnsLY%3D] 10.1103/PhysRevLett.60.535
Ashoori RC, et al.: Phys. Rev. Lett.. 1992, 68: 3088. COI number [1:CAS:528:DyaK38XktFynt7s%3D] 10.1103/PhysRevLett.68.3088
Bimberg D, Grundmann M, Ledetsov NN: Quantum Dot Heterostructures. Wiley, Chichester; 1998.
Chu L, et al.: Appl. Phys. Lett.. 1999, 75: 3599. COI number [1:CAS:528:DyaK1MXnsFyrsLY%3D] 10.1063/1.125400
Muto S: Jpn. J. Appl. Phys.. 1995, 34: 210. 10.1143/JJAP.34.L210
Sugiyama Y, et al.: Physica E. 2000, 7: 503. COI number [1:CAS:528:DC%2BD3cXktVaku78%3D] 10.1016/S1386-9477(99)00366-5
Henini M, et al.: Microelectron. J.. 1997, 28: 933. 10.1016/S0026-2692(96)00132-2
Kitamura N, et al.: Appl. Phys. Lett.. 1995, 66: 3663. COI number [1:CAS:528:DyaK2MXmsFSks7g%3D] 10.1063/1.114133
Miu DSL, et al.: Appl. Phys. Lett.. 1995, 66: 1620. 10.1063/1.113871
Jeppesen S, et al.: Appl. Phys. Lett.. 1996, 68: 2228. COI number [1:CAS:528:DyaK28Xitlyhtrs%3D] 10.1063/1.115867
Sugiyama Y, et al.: Jpn. J. Appl. Phys.. 1996, 35: 1320. COI number [1:CAS:528:DyaK28XisFSqurs%3D] 10.1143/JJAP.35.1320
Solomon GS, et al.: Phys. Rev. Lett.. 1996, 76: 952. COI number [1:CAS:528:DyaK28Xotl2htw%3D%3D] 10.1103/PhysRevLett.76.952
Notzel R, et al.: Jpn. J. Appl. Phys. Part 2. 1994, 33: L275. COI number [1:CAS:528:DyaK2cXivVGgtb8%3D] 10.1143/JJAP.33.L275
Notzel R, et al.: Nature (London). 1994, 369: 131. 10.1038/369131a0
Notzel R, et al.: Appl. Phys. Lett.. 1994, 65: 457. 10.1063/1.113021
Nishi K, et al.: J. Appl. Phys.. 1996, 80: 3466. COI number [1:CAS:528:DyaK28XlslWht7g%3D] 10.1063/1.363216
Lubyshev DI, et al.: J. Vac. Sci. Tech. B. 1996, 14: 2212. COI number [1:CAS:528:DyaK28XktVCjtLo%3D] 10.1116/1.588902
Reaves CM, et al.: Appl. Phys. Lett.. 1996, 69: 3878. COI number [1:CAS:528:DyaK28XnsF2hsrk%3D] 10.1063/1.117135
Henini M, et al.: Phys. Rev. B. 1998, 57: R6815. COI number [1:CAS:528:DyaK1cXhvVeisrw%3D] 10.1103/PhysRevB.57.R6815
Nishi K, et al.: Appl. Phys. Lett.. 1997, 70: 3579. COI number [1:CAS:528:DyaK2sXkt1Grs7k%3D] 10.1063/1.119239
Moison JM, et al.: Appl. Phys. Lett.. 1994, 64: 196. COI number [1:CAS:528:DyaK2cXitVGksb0%3D] 10.1063/1.111502
Zou J, et al.: Phys. Rev. B. 1999, 59: 12273. 10.1103/PhysRevB.59.12279
Ruvimov S, et al.: Phys. Rev. Lett.. 2000, 84: 334. 10.1103/PhysRevLett.84.334
Liu N, et al.: Phys. Rev. Lett.. 2000, 84: 334. COI number [1:CAS:528:DC%2BD3cXisFWhsg%3D%3D] 10.1103/PhysRevLett.84.334
Yang W, et al.: Phys. Rev. B. 2000, 61: 2784. COI number [1:CAS:528:DC%2BD3cXns1Sltw%3D%3D] 10.1103/PhysRevB.61.2784
Garcıa JM, et al.: Appl. Phys. Lett.. 1997, 71: 2014. 10.1063/1.119772
Takehana K, et al.: J. Cryst. Growth. 2003, 251: 155. COI number [1:CAS:528:DC%2BD3sXitlWmu7k%3D] 10.1016/S0022-0248(02)02407-7
Kamiya I, et al.: J. Crystal Growth. 1999, 201/202: 1146. COI number [1:CAS:528:DyaK1MXivF2qsb8%3D] 10.1016/S0022-0248(99)00005-6
Patane A, et al.: Superlattices Microstruct.. 1999,25(1/2):113. COI number [1:CAS:528:DyaK1MXhtlequ7g%3D] 10.1006/spmi.1998.0622
Kawabe M, et al.: Jap. J. Appl. Phys.. 1997, 36: 4078. COI number [1:CAS:528:DyaK2sXkvFGgsL4%3D] 10.1143/JJAP.36.4078
Henini M, et al.: Microelectron. J.. 2002, 33: 313. COI number [1:CAS:528:DC%2BD38XitFamtb0%3D] 10.1016/S0026-2692(01)00124-0
A. Polimeni et al., Phys. Rev. B 59, 5064 (1999); A. Patane et al., Appl. Phys. Lett. 75, 814 (1999)
Snell BR, et al.: Phys. Rev. Lett.. 1987, 59: 2806. COI number [1:CAS:528:DyaL1cXos1Sisw%3D%3D] 10.1103/PhysRevLett.59.2806
R.K. Hayden et al., Phys. Rev. Lett. 66, 1749 (1991); O.H. Hughes et al., J. Vac. Sci. Technol. B7, 1041 (1989)
J. Wang et al., Phys. Rev. Lett. 73, 1146 (1994); P. Beton et al., Phys. Rev. Lett. 75, 1996 (1995)
Sakai JWL, et al.: Phys. Rev. B. 1993, 48: 5664. COI number [1:CAS:528:DyaK3sXms1Sht7s%3D] 10.1103/PhysRevB.48.5664
Crommie MF, et al.: Nature. 1993, 262: 218. COI number [1:CAS:528:DyaK3sXms1ShtLo%3D]
Patanè A, et al.: Phys. Rev. B. 2000, 62: 13595. 10.1103/PhysRevB.62.13595
Vdovin EE, et al.: Science. 2000, 290: 124. 10.1126/science.290.5489.122
Main PC, et al.: Phys. Rev. lett.. 2000, 84: 729. COI number [1:CAS:528:DC%2BD3cXlvVKmtQ%3D%3D] 10.1103/PhysRevLett.84.729
Levin A, et al.: Phys. Stat. Sol.. 2001, 224: 715. COI number [1:CAS:528:DC%2BD3MXisFansrY%3D] 10.1002/(SICI)1521-3951(200104)224:3<715::AID-PSSB715>3.0.CO;2-L
Bimberg D, et al.: Quantum Dot Heterostructures. John Wiley & Sons, New York; 1999.
Stier O, et al.: Phys. Rev. B. 1999, 59: 5688. COI number [1:CAS:528:DyaK1MXhtF2msLc%3D] 10.1103/PhysRevB.59.5688
Wang LW, et al.: Phys. Rev. B. 1999, 59: 5678. COI number [1:CAS:528:DyaK1MXhtF2msLY%3D] 10.1103/PhysRevB.59.5678
Zh.I. Alferov et al., Sov. Phys. Semicond. 4, 1573 (1970); Zh.I. Alferov et al., Fiz. Tekh. Poluprovodn. 4, 1826 (1970); I. Hayashi et al., Appl. Phys. Lett. 17, 109 (1970); R. C. Miller et al., J. Appl. Phys. 47, 4509 (1976); R.D. Dupuis et al., Appl. Phys. Lett. 32, 295 (1978); W.T. Tsang, Appl. Phys. Lett. 39, 786 (1981); Zh.I. Alferov et al., Pis’ma v Z.Tekn. Fiz. 14, 1803 (1988); N. Chand et al., Appl. Phys. Lett. 58, 1704 (1991); N. Kirstaedter et al., Electron. Lett. 30, 1416 (1994); N.N. Ledentsov et al., Phys. Rev. B 54, 8743 (1996); G.T. Liu et al., Electron. Lett. 35, 1163 (1999); R.L. Sellin et al., Appl. Phys. Lett. 78, 1207 (2001)
D. Bimberg et al., MRS Bulletin July 2002, p. 531
Sellin RL, et al.: Appl. Phys. Lett.. 2001, 78: 1207. COI number [1:CAS:528:DC%2BD3MXhtl2gur4%3D] 10.1063/1.1350596
Kirstaedter N, et al.: Electron. Lett.. 1994, 30: 1416. COI number [1:CAS:528:DyaK2MXhvFygtr4%3D] 10.1049/el:19940939
Shoji H, et al.: IEEE Photon. Technol. Lett.. 1995, 7: 1385. 10.1109/68.477257
Alferov ZI, et al.: Semiconductors. 1996, 30: 193.
Ledentsov NN, et al.: Phys. Rev. B. 1996, 54: 8743. COI number [1:CAS:528:DyaK28Xmt1Oisrs%3D] 10.1103/PhysRevB.54.8743
Xie Q, et al.: IEEE Photon. Technol. Lett.. 1996, 8: 965. 10.1109/68.508705
Huang X, et al.: Electron. Lett.. 2001, 36: 41. 10.1049/el:20000124
Chand N, et al.: Appl. Phys. Lett.. 1991, 58: 1704. COI number [1:CAS:528:DyaK3MXitlOhsb0%3D] 10.1063/1.105114
Heinrichsdorff H, et al.: Appl. Phys. Lett.. 2000, 76: 556. COI number [1:CAS:528:DC%2BD3cXnsValtA%3D%3D] 10.1063/1.125816
Sellin RL, et al.: Electron. Lett.. 2002, 38: 883. COI number [1:CAS:528:DC%2BD38Xns1WisLs%3D] 10.1049/el:20020602
Ustinov VM, et al.: Tech. Phys. Lett.. 1998, 24: 49. COI number [1:CAS:528:DyaK1cXis1Citb0%3D] 10.1134/1.1261977
Hunzer K, et al.: J. Appl. Phys.. 2000, 87: 1496. 10.1063/1.372040
Park G, et al.: Appl. Phys. Lett.. 1999, 75: 3267. COI number [1:CAS:528:DyaK1MXnsVaksb0%3D] 10.1063/1.125320
Huffuker DL, et al.: Appl. Phys. Lett.. 1998, 73: 2564. 10.1063/1.122534
Mukai K, et al.: IEEE J. Quantum Electon.. 2000, 36: 472. COI number [1:CAS:528:DC%2BD3cXisVSntrk%3D] 10.1109/3.831025
Ustinov VM, et al.: Appl. Phys. Lett.. 1999, 74: 2815. COI number [1:CAS:528:DyaK1MXivV2nur4%3D] 10.1063/1.124023
Huang X, et al.: Electron. Lett.. 2000, 36: 41. COI number [1:CAS:528:DC%2BD3cXhsF2gu7c%3D] 10.1049/el:20000124
Kovsh AR, et al.: Electron. Lett.. 2002, 38: 1104. COI number [1:CAS:528:DC%2BD38XoslWjtLw%3D] 10.1049/el:20020793
Jang JW, et al.: Appl. Phys. Lett.. 2004, 85: 3675. COI number [1:CAS:528:DC%2BD2cXptFehsrs%3D] 10.1063/1.1812365
Maksimov MV, et al.: Semiconductors. 2004, 38: 732. COI number [1:CAS:528:DC%2BD2cXkvVejsLY%3D] 10.1134/1.1766381
Wilk A, et al.: J. Cryst. Growth. 2005, 278: 335. COI number [1:CAS:528:DC%2BD2MXjsVelt78%3D] 10.1016/j.jcrysgro.2005.01.040
Acknowledgments
This work is supported by the Engineering and Physical Sciences Research Council (U.K.) and the SANDiE Network of Excellence of the European Commission (Contract no. NMP4-CT-2004-500101). I am grateful to L. Eaves, A. Patane, A. Polimeni, P.C. Main, K. Takehana, F. Pulizzi, A. Levin, S. Sanguinetti, M. Guzzi, M.D. Upward, P. Moriarty, M. Al-Khafaji, A.G. Cullis, E.E. Vdovin, Yu.N. Khanin, Yu.V. Dubrovskii, G. Hill, D. Granados, J.M. Garcia, N.N. Ledenstov and D. Bimberg for their contribution to this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Henini, M. Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy. Nanoscale Res Lett 1, 32 (2006). https://doi.org/10.1007/s11671-006-9017-5
Published:
DOI: https://doi.org/10.1007/s11671-006-9017-5
Keywords
- Heterostructures
- Semiconductors
- Self-assembly
- Quantum dots
- Lasers
- Optoelectronics