Skip to main content
Log in

Effects of triptolide on histone acetylation and HDAC8 expression in multiple myeloma in vitro

  • Original Article
  • Published:
Chinese Journal of Cancer Research

Abstract

Objective

Multiple myeloma is a kind of malignant plasma cell disease that originated from B lymphocyte and secrete great amount of monoclonal immunoglobulin. It is still one of the refractory diseases at present. Numerous studies show that there is an intensive relationship between the disequilibrium of histone acetylation and the occurance of multiple myeloma. Here we investigated the effect of triptolide(TPL) on the proliferation, apoptosis, histone H3 and H4 acetylation and expression of histone deacetylase 8 (HDAC8) in vitro, to explore its anti-myeloma mechanism.

Methods

The effect of triptolide on the growth of RPMI8226 was studied by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium(MTT) assay. Apoptosis was detected by Hoechst 33258 staining. The protein expressions of acetyl-histone H3 and H4 were determined by Western blot, and the expression of HDAC8 was assessed by RT-PCR, Western blot and confocal microscopy.

Results

Triptolide inhibited the proliferation of RPMI8226 and induced apoptosis in a time- and dose-dependent manner. The 36h IC50 value was (105.370 ± 0.189)nmol/L. Triptolide increased the acetylation of histone H3 and H4 greatly. Furthermore, triptolide significantly down-regulated the mRNA and protein expression of HDAC8.

Conclusion

Triptolide can inhibit proliferation and induce apoptosis of RPMI8226 significantly. Triptolide reduces the expression of HDAC8 in order to increase the histone H3 and H4 acetylation, which is possibly the anti-myeloma mechanism of triptolide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter BZ, Mak DH, Schober WD, et al. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells[J]. Blood 2006; 108: 630–637.

    Article  CAS  PubMed  Google Scholar 

  2. Kiviharju TM, Lecane PS, Sellers RG, et al. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells[J]. Clin Cancer Res 2002; 8: 2666–2674.

    CAS  PubMed  Google Scholar 

  3. Xiang M, Zhang C. Advances in studies on immunosuppression of Tripterygium wilfordii[J]. Chin Trad Herb Dru(in Chinese) 2005; 36: 458–461.

    CAS  Google Scholar 

  4. Yang S, Chen J, Guo Z, et al. Triptolide inhibits the growth and metastasis of solid tumors[J]. Mol Cancer Ther 2003; 2: 65–72

    CAS  PubMed  Google Scholar 

  5. Yang M, Shen JK, Huang J, Du HP, Ma QL, Jin J. Interleukin-6-independent expression of glucocorticoid receptor is upregulated by triptolide in multiple myeloma[J]. Leuk Lymphoma 2009; 50: 802–808.

    Article  CAS  PubMed  Google Scholar 

  6. Carter BZ, Mak DH, Schober WD, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5[J]. Blood 2008; 111: 3742–3750.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Cui GH, Liu F, et al. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro. Acta Pharmacol Sin. 2006; 27:1438–1446.

    Article  CAS  PubMed  Google Scholar 

  8. Borja-Cacho D, Yokoyama Y, Chugh RK, et al. TRA2L and triptolide: an effective combination that induces apoptosis in pancreatic cancer cells[J]. Gastroinbtest Surg. 2010; 14: 252–260.

    Article  Google Scholar 

  9. KrejcÍ J, Harničarová A, Streitová D, et al. Epigenetics of multiple myeloma after treatment with cytostatics and gamma radiation[J]. Leukemia Res 2009; 33: 1490–1498.

    Article  Google Scholar 

  10. Feng R, Ma H, Hassig CA, et al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling[J]. Mol Cancer Ther 2008; 7: 1494–1505.

    Article  CAS  PubMed  Google Scholar 

  11. Dong XF, Song Q, Li LZ, et al. Histone deacetylase inhibitor valproic acid inhibits proliferation and induces apoptosis in KM3 cells via downregulating VEGF receptor[J]. Neuro Endocrinol Lett 2007; 28: 775–780.

    CAS  PubMed  Google Scholar 

  12. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family[J]. Biochem J 2003; 370: 737–7349.

    Article  PubMed  Google Scholar 

  13. Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression[J]. Curr Opin Genet Dev 2003; 13: 143–153.

    Article  CAS  PubMed  Google Scholar 

  14. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis[J]. J Mol Biol 2004; 338: 17–31.

    Article  CAS  PubMed  Google Scholar 

  15. Waltregny D, Glénisson W, Tran SL, et al. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility[J]. FASEB J 2005; 19: 966–968.

    CAS  PubMed  Google Scholar 

  16. Lee H, Sengupta N, Villagra A, et al. Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation[J]. Mol Cell Biol 2006; 26: 5259–5269.

    Article  CAS  PubMed  Google Scholar 

  17. Lee H, Rezai-Zadeh N, Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A[J]. Mol Cell Biol 2004; 24: 765–773.

    Article  CAS  PubMed  Google Scholar 

  18. Lavelle D, Chen YH, Hankewych M, et al. Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression[J]. Am J Hematol 2001; 68: 170–178.

    Article  CAS  PubMed  Google Scholar 

  19. Nian H, Delage B, Pinto JT, et al. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter[J]. Carcinogenesis 2008; 29: 1816–1824.

    Article  CAS  PubMed  Google Scholar 

  20. Ficner R. Novel structural insights into class I and II histone deacetylases[J]. Curr Top Med Chem 2009; 9:235–240.

    Article  CAS  PubMed  Google Scholar 

  21. Oehme I, Deubzer HE, Wegener D, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis[J]. Clin Cancer Res 2009; 15: 91–99.

    Article  CAS  PubMed  Google Scholar 

  22. Choi YJ, Kim TG, Kim YH, et al. Immunosuppressant PG490 (triptolide) induces apoptosis through the activation of caspase-3 and down-regulation of XIAP in U937 cells[J]. Biochem Pharmacol 2003; 66: 273–280.

    Article  CAS  PubMed  Google Scholar 

  23. Balasubramanian S, Ramos J, Luo W, et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas[J]. Leukemia 2008; 22: 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  24. Yinjun L, Jie J, Yungui W. Triptolide inhibits transcription factor NF-kappaB and induces apoptosis of multiple myeloma cells[J]. Leuk Res 2005; 29: 99–105.

    Article  PubMed  Google Scholar 

  25. Zhou GX, Ding XL, Huang JF, et al. Apoptosis of human pancreatic cancer cells induced by Triptolide [J]. World J Gastroenterol 2008; 14: 1504–1509.

    Article  CAS  PubMed  Google Scholar 

  26. Lin J, Chen LY, Lin ZX, et al. The effect of triptolide on apoptosis of glioblastoma multiforme (GBM) cells[J]. J Int Med Res 2007; 35: 637–643.

    CAS  PubMed  Google Scholar 

  27. Yang M, Huang J, Pan HZ, et al. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-κB pathways in human multiple myeloma cells[J]. Int J Mol Med 2008; 22: 489–496.

    CAS  PubMed  Google Scholar 

  28. Buggy JJ, Sideris ML, Mak P, et al. Cloning and characterization of a novel human histone deacetylase, HDAC8[J]. Biochem J 2000; 350:199–205.

    Article  CAS  PubMed  Google Scholar 

  29. Gurard-Levin ZA, Mrksich M. The Activity of HDAC8 Depends on Local and Distal Sequences of Its Peptide Substrates[J]. Biochemistry 2008; 47: 6242–6250.

    Article  CAS  PubMed  Google Scholar 

  30. Lee DY, Hayes JJ, Pruss D, et al. A positive role for histone acetylation in transcription factor access to nucleosomal DNA[J]. Cell 1993; 72: 73–84.

    Article  CAS  PubMed  Google Scholar 

  31. Wolffe AP, Guschin D. Chromatin structural features and targets that regulate transcription[J]. J Struct Biol 2000; 129:102–122.

    Article  CAS  PubMed  Google Scholar 

  32. Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs[J]. Curr Opin Oncol 2001; 13: 477–483.

    Article  CAS  PubMed  Google Scholar 

  33. Muthukrishnan R, Skalnik DG. Identification of a minimal cis-element and cognate trans-factor(s) required for induction of Rac2 gene expression during K562 cell differentiation[J]. Gene 2009; 440: 63–72.

    Article  CAS  PubMed  Google Scholar 

  34. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at lys16 and trimethylation at lys20 of histone H4 is a common hallmark of human cancer[J]. Nat Genet 2005; 37: 391–400.

    Article  CAS  PubMed  Google Scholar 

  35. Yasui W, Oue N, Ono S, et al. Histone acetylation and gastrointestinal carcinogenesis[J]. Ann N Y Acad Sci 2003; 983: 220–231.

    Article  CAS  PubMed  Google Scholar 

  36. Song J, Noh JH, Lee JH, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer[J]. APMIS 2005; 113: 264–268.

    Article  CAS  PubMed  Google Scholar 

  37. Chiecchio L, Dagrada GP, Protheroe RK, et al. Loss of 1p and rearrangement of MYC are associated with progression of smouldering myeloma to myeloma: sequential analysis of a single case[J]. Haematologica 2009; 94:1024–1028.

    Article  CAS  PubMed  Google Scholar 

  38. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors[J]. Blood 2001; 98: 3082–3086.

    Article  CAS  PubMed  Google Scholar 

  39. Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma[J]. Proc Natl Acad Sci USA 2000; 97: 228–233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China(No.30700882)

Contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Zeng, Ll., Chen, Y. et al. Effects of triptolide on histone acetylation and HDAC8 expression in multiple myeloma in vitro . Chin. J. Cancer Res. 22, 148–155 (2010). https://doi.org/10.1007/s11670-010-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11670-010-0148-y

Key words

CLC number

Navigation