Skip to main content
Log in

Critical assessment and thermodynamic calculation of the binary system hafnium-carbon (Hf-C)

  • Published:
Journal of Phase Equilibria

Abstract

Based on an assessment of the available experimental thermochemical and phase diagram information, the phase equilibria involving the condensed phases of the Hf-C system were calculated. The Gibbs energies of the individual phases were described with thermodynamic models. The liquid phase was described as a substitutional solution using the Redlich-Kister formalism for the excess Gibbs energy. Graphite was treated as a stoichiometric phase. The solid solutions of carbon in αHf and βHf as well as the nonstoichiometric phase HfC1-x were described as interstitial solid solutions employing the compound energy model (CEM) with two sublattices. The parameters in the models were determined by computerized optimization using selected experimental data. The temperature dependence of the Gibbs energies of the metastable carbides HfC0.5 and HfC3, which are involved in the CEM for αHf and βHf, were estimated using a method based on the regular behavior of the vibrational entropy of transition metal carbides. A thermodynamic description was obtained, which was used in the calculation of the Hf-C phase diagram. Detailed comparison is made between calculation and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. C. Agte and H. Alterthum, “Systems of High-Melting Carbides; Contribution to the Problem of Carbon Fusion,” Z. Tech, Phys., 11, 182–191 (1930) in German (Experimental)

    Google Scholar 

  2. O. Redlich and A.T. Kister, “The Algebraic Representation of Thermodynamic Properties and the Classification of Solids,” Ind. Eng. Chem., 40, 345–348 (1948). (Theory)

    Article  Google Scholar 

  3. P.G. Cotter and J.A. Kohn, “Industrial Diamond Substitutes: I, Physical and X-Ray Study of Hafnium Carbide,” J. Am. Ceram. Soc, 37(9), 415–420 (1954). (Experimental)

    Article  Google Scholar 

  4. F. Benesovsky and E. Rudy, “Contribution to the Systems Zirconium-Carbon and Hafnium-Carbon,” Planseeber. Pulvermetall., 8(2), 66–71 (1960) in German. (Experimental)

    Google Scholar 

  5. D.S. Neel, C.D. Pears, and S. Oglesby Jr., Tech. Rep. WADD-TR-60-924, Wright Air Development Division, Wright-Patterson Air Force Base, OH (1960). (Experimental)

    Google Scholar 

  6. H. Kato and M.I. Copeland, Tech. Rep. USBM-U-887(QPR13), U.S. Atomic Energy Comm.,8pp (1961). (Experimental)

  7. K.I. Portnoi, Yu.V. Levinskii, and V.I. Fadeeva, “Reaction with Carbon of Some Refractory Carbides and Their Solid Solutions,” Izv. Akad. Nauk SSSR, Otd. Tekh Nauk, Met. Toplivo, (2), 147–149(1961) in Russian. (Experimental)

  8. R.G. Avarde, A.I. Avgustinik, Yu.N. Vil'K, Yu.D. Kondrashov, S.S. Nikol'skii.Yu.A. Omel'chenko, and S.S. Ordan'yan, “Phase Diagram of the Hf-HfC System,” Zh. Prikl. Khim., 35, 1976–1980 (1962) in Russian. (Experimental)

    Google Scholar 

  9. H. Bittner and H. Goretzki, “Magnetic Investigation of Carbides TiC, ZrC, HfC, VC, NbC and TaC,” Monatsh. Chem., 93, 1000–1004 (1962) in German. (Experimental)

    Article  Google Scholar 

  10. M.I. Copeland, Tech. Rep. BM-U-952, U.S. Bureau of Mines (1962). (Experimental)

  11. H. Kato and M. Copeland, USBM-U-921, U.S. Atomic Energy Comm., 12–13 (1962); USBM-U-952, U.S. Atomic Energy Comm., 14–16 (1962); USBM-U-978, U.S. Atomic Energy Comm., 5–7 (1962); USBM-U-1001, U.S. Atomic Energy Comm., 7–8 (1962); USBM-U-1031, U.S. Atomic Energy Comm., 19–21 (1963); USBM-U-1057,U.S. Atomic Energy Comm., 14–19(1963). (Experimental)

  12. J.I. Wittebort, Tech. Rep. WADD-TR-60-924, Armed Services Technical Information Agency (1962). (Experimental)

  13. R.P. Adams and R.A. Beall, “Preparation and Evaluation of Fused Hafnium Carbide,” U.S. Bur. Mines, Rep. Invest. 6304,17 pp (1963). (Experimental)

  14. J.A. Coffman, G.M. Kibler, T.F. Lyon, and B.D. Acchione, “Carbonization of Plastics and Refractories Materials Research,” Tech. Rep. WADD-TR-60-646, Part II, Wright Air Development Division, Wright-Patterson Air Force Base, OH (1963). (Experimental)

    Google Scholar 

  15. L.S. Levinson, “High-Temperature Heat Content of Tungsten Carbide and Hafnium Carbide,” J. Chem. Phys. 40(5), 1437–1438 (1964). (Experimental)

    Article  ADS  Google Scholar 

  16. A.D. Mah, USBM-6518, U.S. Bureau of Mines (1964). (Experimental)

  17. L. A. McClaine, “Thermodynamic and Kinetic Studies fora Refractory Materials Program,” Tech. Rep. ASD-TDR-62-204, Part III, Air Force Materials Laboratory, Wright-Patterson AFB, OH (1964). (Experimental; #)

    Google Scholar 

  18. R.A. McDonald, F.L. Oetting, and H. Prophet, Proc. Meet. Interagency Chem. Rocket Propulsion Group Thermochem., New York, 1963, CPIA 44, Vol. 1, Johns Hopkins Univ., Appl. Phys. Lab., Silver Spring, MD, 213–245 (1964).

    Google Scholar 

  19. V.I. Zehlankin and V.S. Kutsev, “Variation of the Heat of Formation of Hafnium Carbides with Composition,” Russ. J. Phys. Chem., 38(3), 302–303 (1964). (Experimental)

    Google Scholar 

  20. E. Rudy, “Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Part 1. Related Binary Systems. Vol. 4. Hf-C System,” Tech. Rep. AFML-TR-65-2, Part I, Vol. IV, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 62 pp (1965). (Experimental;#)

    Google Scholar 

  21. R.V. Sara, “The Hafnium-Carbon System,” Trans. Metall. Soc. AIME, 233(9), 1683–1691 (1965). (Experimental)

    Google Scholar 

  22. L.M. Adelsberg, L.H. Cadoff, and J.M. Tobin, “Group IV-B and V-B Metal Carbide-Carbon Eutectic Temperatures,” J. Am. Ceram. Soc. 49(10), 573–574 (1966). (Experimental)

    Article  Google Scholar 

  23. V.V. Fesenko, A.S. Bolgar, and S.P. Gordienko, “Vaporization Rate, Vapor Pressure, Composition Discontinuity, and Some Thermodynamic Properties of Refractory Compounds at Temperatures up to 3000°,” Rev. Hautes Tempér. Réfract., 5(3), 261–271 (1966) in French. (Experimental)

    Google Scholar 

  24. H.L. Schick, Thermodynamics of Certain Refractory Compounds, Vol. 1, Academic Press, New York (1966). (Experimental)

    Google Scholar 

  25. L.M. Adelsberg and L.H. Cadoff, “The Reactions of Liquid Titanium and Hafnium with Carbon,” Trans. Metall. Soc. AIME, 239(6), 933–935 (1967). (Experimental)

    Google Scholar 

  26. A.S. Bolgar, E.A. Gusyeva, and V.V. Fesenko, “Thermodynamic Properties of Zirconium and Hafnium Carbides over the Range of 298-2500 °K,” Pomshk. Metall., 49(1), 40–43 (1967) in Russian. (Experimental)

    Google Scholar 

  27. D.K. Deardorff, M.I. Copeland, and R.P. Adams, “The Hafnium-Carbon Phase Diagram,” U.S. Bur. Mines, Rep. Invest. 6983,16 pp (1967). (Experimental)

  28. M. Hoch, “The Role of the Defect Interaction Energy on the Stability of Interstitial Phases,” Phase Stability of Metals and Alloys, P.S. Rudman, J. Stringer, and R.I. Jaffee, Ed., McGraw-Hill, New York (1967). (Theory)

    Google Scholar 

  29. E.K. Storms, The Refractory Carbides, Vol. 2, Refractory Materi-als, Academic Press, New York (1967). (Compilation; #)

    Google Scholar 

  30. E. Rudy, “Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Part V., Compendium of Phase Diagram Data,” Tech. Rep. AFML-TR-65-2, Part V, Air Force Materials Laboratory, Wright-Patterson AFB, OH, 165–167 (1969). (Review; #)

    Google Scholar 

  31. E.A. Guseva, A.G. Turchanin, V.V. Morozov, A.S. Bolgar, and V.V. Fesenko, “An Experimental Study of the Heat Content of Hafnium Carbide in the Region of Homogeneity at High Temperatures,” Zh. Fiz. Khim., 45(11), 2948 (1971) in Russian. (Experimental)

    Google Scholar 

  32. L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York (1971). (Compilation; #)

    Google Scholar 

  33. V.N. Zagryazkin, E.V. Fiveisky, and A.S. Panov, “Thermodynamic Properties of the Monocarbides of Transition Metals. II. Thermodynamic Properties of the Monocarbides of Group IV-V Transition Metals,” Zh. Fiz, Khim., 47(8), 1951–1955 (1973) in Russian; TR: Russ. J. Phys. Chem., 47(8), 1099–1101 (1973). (Theory)

    Google Scholar 

  34. S.E. Buravoi and M.L. Taubin, “Thermophysical Properties of Carbides of Titanium, Zirconium, Hafnium and Niobium at 50-1000 °C,” Inorganic Mater., 10, 319–321 (1974). (Experimental)

    Google Scholar 

  35. V.N. Eremenko, T.Ya. Velikanova, and S.V. Shabanova, “Phase Diagram of the Hafnium-Carbon Binary System,” Strukt. Faz, Fazouye Prevrashch. Diagr. Sostoyaniya, O.S. Ivanov and Z.M. Alekseeva, Ed., Nauka, Moscow, 129–132 (1974) in Russian. (Experimental; #)

    Google Scholar 

  36. F. J. Kohl and C. A. Steams, “Vaporization and Dissociation Energies of the Molecular Carbides of Titanium, Zirconium, Hafnium and Thorium,” High Temp. Sci., 6, 284–302 (1974). (Experimental)

    Google Scholar 

  37. N. Kornilov, N.V. Chelovskaya, V.I. Zhelankin, and G.P. Shveikin, “Enthalpies of Formation of Hafnium Carbides,” J. Chem. Thermodyn., 9(7), 629–642 (1977). (Experimental)

    Article  Google Scholar 

  38. E.F. Westrum, Jr. and G. Feick, “Heat Capacities of HfB2.035 and HfC0.968 from 5 to 350 K,” J. Chem. Thermodyn., 9, 293–299 (1977). (Experimental)

    Article  Google Scholar 

  39. V.M. Maslov, A.S. Neganov, I.P. Borovinskaya, and A.G. Merzhanov, “Self-Propagating High-Temperature Synthesis as a Method for Determination of the Heat of Formation of Refractory Compounds,” Fiz, Goreniya Vzryva, 14(6), 73–82 (1978) in Russian. (Experimental)

    Google Scholar 

  40. P.J. Spencer, O. Kubaschewski-von Goldbeck, R. Ferro, R. Marazza, K. Girgis, and O. Kubaschewski, Hafnium Physico-Chemical Properties of Its Compounds and Alloys, K.L. Komarek, Ed., Atomic Energy Review, Special Issue No. 8, IAEA, Vienna (1981). (Compilation; #)

    Google Scholar 

  41. A.G. Turchanin and A.E. Polyakov, “Thermodynamic Properties of Hafnium Carbide in the Temperature Range 0-3000 °K,” Izv. Akad. NaukSSSR, Neorg. Mater., 18(3), 404–406 (1982) in Russian; TR: Inorganic Mater., 18(3), 335–338 (1982). (Compilation)

    Google Scholar 

  42. J. Rosén and G. Grimvall, “Anharmonic Lattice Vibrations in Simple Metals,” Phys. Rev., B27(12), 7199–7208 (1983). (Theory)

    ADS  Google Scholar 

  43. B. Sundman, B. Jansson, and J.-O. Andersson, “The Thermo-Calc Databank System,” Calphad, 9, 153–190 (1985). (Theory)

    Article  Google Scholar 

  44. J.-O. Andersson, A. Fernandez Guillermet, M. Hillert, B. Jansson, and B. Sundman, “A Compound-Energy Model of Ordering in a Phase with Sites of Different Coordination Numbers,” Acta Metall., 34(3), 437–445 (1986). (Theory)

    Article  Google Scholar 

  45. G. Grimvall and M. Thiessen, “The Strength of Interatomic Forces,” Science of Hard Materials, E.A. Almond, C.A. Brookes, and R. Warten, Ed., Inst. Phys. Conf. Ser. No. 75: Chapter 1,61–67 (1986). (Theory)

  46. A.G. Turchanin, “Thermodynamics of Cubic Refractory Carbides of Group IV Transition Metals of Variable Composition in the Range 1200-2500 °K,” Izv. Akad. Nauk SSSR, Neorg. Mater, 22(8), 1299–1302 (1986) in Russian; TR: Inorganic Mater., 22(8), 1136–1139 (1986). (Compilation)

    Google Scholar 

  47. J.-O. Andersson, “ AThermodynamic Evaluation of the Fe-Cr-C System,” Metall. Trans., 19A, 627–636 (1988).

    MathSciNet  Google Scholar 

  48. R. Berkane, “Thermodynamic Study of Chromium, Titanium, Zirconium and Hafnium Carbides by High Temperature Calorimetry Numerical Modeling of the Phase Diagram,” Thesis, Université de Nancy I (1989). (Experimental)

  49. A. Fernández Guillemet and G. Grimvall “Cohesive Properties and Vibrational Entropy of 3d Transition-Metal Compounds: MX (NaCl) (X=C, N, O, S), Complex Carbides and Nitrides,” Phys. Rev., 040(15), 10582–10593 (1989). (Theory)

    Article  Google Scholar 

  50. A. Fernández Guillemet and G. Grimvall, “Homology of Interatomic Forces and Debye Temperatures in Transition Metals,” Phys. Rev., B40(3), 1521–1527 (1989). (Theory)

    ADS  Google Scholar 

  51. A. Fernández Guillemet and G. Grimvall, “Correlations for Bonding Properties and Vibrational Entropy in 3d-Transition Metal Compounds, with Application to the CALPHAD Treatment of a MetastableCr-CPhase,”Z Metallkd., 81, 521–524 (1990). (Theory)

    Google Scholar 

  52. H. Okamoto, “The C-Hf (Carbon-Hafnium) System,” Bull. Alloy Phase Diagrams, 11(4), 369–403 (1990). (Compilation; #)

    Google Scholar 

  53. B. Sundman, “Review of Alloys Modelling,” An. Fisica, Serie B 86, 69–82 (1990). (Theory)

    Google Scholar 

  54. A.T. Dinsdale, “SGTE Data for Pure Elements,” Calphad, 15, 319–427 (1991). (Compilation)

    Article  Google Scholar 

  55. A. Fernández Guillemet, “Predictive Approach to Thermodynamic Properties of Metastable Cr3C Carbide,” Int. J. Thermophys., 12(5), 919–936 (1991). (Theory)

    Article  Google Scholar 

  56. A. Fernández Guillemet and W. Huang, “Thermodynamic Analysis of Stable and Metastable Carbides in the Mn-V-C System and Predicted Phase Diagrarn” Int. J. Thermophys., 12(6), 1077–1102 (1991). (Theory)

    Article  Google Scholar 

  57. A. Fernández Guillemet and G. Grimvall, “Cohesive Properties and Vibrational Entropy of 3d-Transition Metal Carbides,” J. Phys. Chem. Solids 53(1), 105–125 (1992). (Theory)

    Article  Google Scholar 

  58. S. Jonsson, Thesis, Royal Institute of Technology, Stockholm, Sweden (1992).

    Google Scholar 

  59. S. Wolfram, MATHEMATICA, A System for Doing Mathematics by Computer, Addison-Wesley, Massachusetts (1992).

    Google Scholar 

  60. A. Fernández Guillemet and S. Jonsson, “Thermodynamic Analysis of Stable and Metastable W Nitrides and Calculation of the W-N Phase Diagram,” Z Metallkd. 84(2), 106–117 (1993). (Theory)

    Google Scholar 

  61. O. Kubaschewski, C.B. Alcock, and P.J. Spencer, Materials Thermochemistry, 6th ed., Pergamon Press, Oxford (1993). (Compilation)

    Google Scholar 

  62. A. Fernández Guillemet, “Analysis ofThermochemical Properties and Phase Stability in the Zirconium-Carbon System,” J. Alloys Compd., 217, 69–89 (1995). (Theory)

    Article  Google Scholar 

  63. H. Bittermann and P. Rogl, “Critical Assessment and Thermodynamic Calculation of the Ternary System Boron-Carbon-Hafnium (B-C-Hf),” Thesis, Institute of Physical Chemistry at the University of Vienna(1997). (Compilation)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittermann, H., Rogl, P. Critical assessment and thermodynamic calculation of the binary system hafnium-carbon (Hf-C). JPE 18, 344–356 (1997). https://doi.org/10.1007/s11669-997-0061-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-997-0061-3

Keywords

Navigation