Skip to main content
Log in

Experimental Investigation and Thermodynamic Assessment of the Cr–Ti System

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2024

This article has been updated

Abstract

The Cr–Ti system was investigated by several experimental methods and first-principles calculations. The thermodynamic activity of the body-centered cubic solid solution was measured by Knudsen effusion mass spectrometry. The stability of all three polymorphic structures of the Laves phase (C14, C15, and C36) was determined by differential thermal analysis, and the equilibrium tie-lines with the solid solution were obtained by combining results from diffusion couples and equilibrated alloys. The enthalpy of formation of the Laves phases with the corresponding end-members were calculated using density functional theory and the obtained values were integrated in the models. The experimental and computed data available in the literature was reviewed and the binary system was assessed by the Calphad method. The present evaluation results in an improved thermodynamic description, which can describe the experimentally observed activity in a large temperature range. The temperatures of the invariant reactions between the C15 and the C36 phase with the Cr-rich and the Ti-rich bcc solid solution were significantly modified. The difference of the temperature of transformation between the C15 and the C36 polytypes on both sides of the Laves phase is much smaller than reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. H. Brearley, Cutlery, US1197256A, 1916.

  2. B. Sun, X. Zuo, X. Cheng, and X. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, Npj Mater. Degrad., 2020, 4(1), p 1-9. https://doi.org/10.1038/s41529-020-00142-5

    Article  Google Scholar 

  3. M.F. Ashby, Material and process selection charts, in: Mater. Sel. Mech. Des., 2nd ed, Butterworth-Heinemann, Boston, MA, 1999, p 413-466.

  4. V.N. Svechnikov, M.Y. Teslyuk, Y.A. Kocherzhinsky, V.V. Petkov, and E.V. Dabizha, Three Modifications of TiCr2, Dopov. Akad. Nauk Ukr. RSR, 1970, 32(9), p 837-837. in Ukranian

    Google Scholar 

  5. J.D. Livingston, Laves-phase superalloys?, Phys. Status Solidi Appl. Mater. Sci, 1992, 131(2), p 415-423. https://doi.org/10.1002/pssa.2211310215

    Article  ADS  Google Scholar 

  6. M. Bououdina, D. Grant, and G. Walker, Review on Hydrogen Absorbing Materials-Structure, Microstructure, and Thermodynamic Properties, Int. J. Hydrog. Energy, 2006, 31(2), p 177-182. https://doi.org/10.1016/j.ijhydene.2005.04.049

    Article  Google Scholar 

  7. E. Akiba and H. Iba, Hydrogen Absorption by Laves Phase Related BCC Solid Solution, Intermetallics, 1998, 6(6), p 461-470. https://doi.org/10.1016/S0966-9795(97)00088-5

    Article  Google Scholar 

  8. F. Stein and A. Leineweber, Laves Phases: A Review of Their Functional and Structural Applications and an Improved Fundamental Understanding of Stability and Properties, J. Mater. Sci., 2021, 56(9), p 5321-5427. https://doi.org/10.1007/s10853-020-05509-2

    Article  ADS  Google Scholar 

  9. J.N. Mundy, C.W. Tse, and W.D. McFall, Isotope Effect in Chromium Self-Diffusion, Phys. Rev. B, 1976, 13(6), p 2349-2357. https://doi.org/10.1103/PhysRevB.13.2349

    Article  ADS  Google Scholar 

  10. J.N. Mundy, H.A. Hoff, J. Pelleg, S.J. Rothman, L.J. Nowicki, and F.A. Schmidt, Self-Diffusion in Chromium, Phys. Rev. B, 1981, 24(2), p 658-665. https://doi.org/10.1103/PhysRevB.24.658

    Article  ADS  Google Scholar 

  11. U. Köhler and C. Herzig, On the Anomalous Self-Diffusion in B.C.C., Titanium, Phys. Status Solidi B, 1987, 144(1), p 243-251. https://doi.org/10.1002/pssb.2221440122

    Article  ADS  Google Scholar 

  12. N.E. Walsöe de Reca and C.M. Libanati, Autodifusion de Titanio Beta y Hafnio Beta, Acta Metall., 1968, 16(10), p 1297-1305. https://doi.org/10.1016/0001-6160(68)90010-2

    Article  Google Scholar 

  13. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Eds., Binary Alloy Phase Diagrams ASM International, Metals Park, 1990

    Google Scholar 

  14. F.C. Frank and J.S. Kasper, Complex Alloy Structures regarded As Sphere Packings. II. Analysis and Classification of Representative Structures, Acta Crystallogr., 1959, 12(7), p 483-499. https://doi.org/10.1107/S0365110X59001499

    Article  Google Scholar 

  15. W. Baumann and A. Leineweber, Solid Solubility by Anti-Site Atoms in the C36-TiCr2 Laves Phase Revealed by Single-Crystal x-ray Diffractometry, J. Alloys Compd., 2010, 505(2), p 492-496. https://doi.org/10.1016/j.jallcom.2010.06.117

    Article  Google Scholar 

  16. K. Ioroi, Y. Aono, X. Xu, T. Omori, and R. Kainuma, Melting Point of Pure Cr and Phase Equilibria in the Cr-Si Binary System, J. Phase Equilib. Diffus., 2022, 43(2), p 229-242. https://doi.org/10.1007/s11669-022-00954-9

    Article  Google Scholar 

  17. W. Zhuang, J. Shen, Y. Liu, L. Ling, S. Shang, Y. Du, and J.C. Schuster, Thermodynamic Optimization of the Cr-Ti System, Z. Metallkd., 2000, 91(2), p 121-127.

    Google Scholar 

  18. R. Vogel and B. Wenderott, Das Zustandsschaubild Eisen-Eisentitanid-Chromtitanid-Chrom, Arch. für Eisenhüttenwes, 1940, 14(6), p 279-282. https://doi.org/10.1002/srin.194000912. in German

    Article  Google Scholar 

  19. M.K. McQuillan, A Provisional Constitutional Diagram of the Chromium-Titanium System, J. Inst. Met., 1951, 79(11), p 379-390.

    Google Scholar 

  20. P. Duwez and J. Taylor, A Partial Titanium-Chromium Phase Diagram and the Crystal Structure of TiCr2, Trans. Am. Soc. Met., 1952, 44, p 495-517.

    Google Scholar 

  21. R. van Thyne, H. Kessler and M. Hansen, The Systems Titanium-Chromium and Titanium-Iron, Trans. Am. Soc. Met., 1952, 44, p 974-989.

    Google Scholar 

  22. F. Cuff, N. Grant, and C. Floe, Titanium-Chromium Phase Diagram, Trans. Am. Inst. Min. Metall. Eng., 1952, 194(8), p 848-853.

    Google Scholar 

  23. B. Levinger, High Temperature Modification of TiCr2, Trans. Am. Inst. Min. Metall. Eng., 1953, 197(2), p 196-196.

    Google Scholar 

  24. M.K. McQuillan, A Redetermination and Interpretation of the Titanium-Rich Region of the Titanium Chromium System, J. Inst. Met., 1954, 82(9), p 433-439.

    Google Scholar 

  25. I.I. Kornilov, V.S. Mikheev, and T.S. Chernova, Constitution Diagram of Ti-Cr, Trudy Inst. Metall. Akad. Nauk SSSR, 1957, 2, p 126-134. in Russian

    Google Scholar 

  26. Y.A. Bagariatskii, G.I. Nosova, and T.V. Tagunova, Study of the Phase Diagrams of the Alloys Titanium-Chromium, Titanium-Tungsten, and Titanium-Chromium-Tungsten, Prepared by the Method of Powder Metallurgy, Zh. Neorg. Khim., 1958, 3(3), p 777-785. in Russian

    Google Scholar 

  27. A.W. Goldenstein, A.G. Metcalfe, and W. Rostoker, The Effect of Stress on the Eutectoid Decomposition of Titanium Chromium Alloys, Trans. Am. Soc. Met., 1959, 51, p 1036-1053.

    Google Scholar 

  28. K. Gross and I. Lamborn, Allotropic Modifications of TiCr2, J. Inst. Met., 1960, 88(9), p 416-416.

    Google Scholar 

  29. I. Ageev, O. Karpinski, and L. Petrova, Stability of Beta-Solid Solution of Titanium-Chromium Alloys, Zh. Neorg. Khim., 1961, 6(8), p 1976-1978.

    Google Scholar 

  30. F. Ermanis, P. Farrar, and H. Margolin, A Reinvestigation of the Systems Ti-Cr and Ti-V, Trans. Metall. Soc. Aime., 1961, 221(5), p 904-908.

    Google Scholar 

  31. V.S. Mikheev and V.S. Aleksashin, Electrical Volume Resistivity of Alloys of the Titanium-Chromium System up to Temperatures of 1100 °C, Fiz. Met. Metalloved., 1962, 14(2), p 231-237.

    Google Scholar 

  32. V.S. Mikheyev and T.S. Chernova, Solubility of Chromium in α-Titanium and Mechanical Properties of the Binary System Titanium-Chromium, Titan Ego Splavy SSSR Inst Met., 1962, 7, p 35-73.

    Google Scholar 

  33. V.N. Svechnikov, Y.A. Kocherzhinskii, and V.I. Latysheva, Consitution Diagram of Chromium Titanium, Vopr. Fiz. Met. Metalloved., 1962, 16, p 132-135. in Ukranian

    Google Scholar 

  34. P. Farrar and H. Margolin, A Reinvestigation of Chromium-Rich Region of Titanium-Chromium System, Trans. Metall. Soc. Aime., 1963, 227(6), p 1342-1345.

    Google Scholar 

  35. N.V. Ageev and M.S. Model, Decay of Solid Solutions of Niobium and and Titanium in Chromium, Dokl. Akad. Nauk SSSR, 1963, 148(1), p 84-85. in Russian

    Google Scholar 

  36. M. Pool, R. Speiser, and G. Pierre, Activities of Chromium and Titanium in Binary Chromium-Titanium Alloys, Trans. Metall. Soc. Aime., 1967, 239(8), p 1180-1186.

    Google Scholar 

  37. E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron–Carbon–Silicon Systems. Part 5. Compendium of Phase Diagram Data, AFML-TR-65-2, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, OH, 1969.

  38. S.A. Minayeva and P.B. Budberg, Phase Structure of Ti-Cr Alloys, Russ. Metall., 1971, 4, p 144-147.

    Google Scholar 

  39. F. Faudot, J. Bigot, Study of Chromium solubility in α pure-Titanium, Titanium Science and Technology, Proceedings of the Fifth International Conference on Titanium, Munich, Deutsche Gesellschaft für Metalkunde e. V., 1984, 3, p 1445-1449.

  40. H. Kudielka, Zum Aufbau des Dreistoff-Systems Titan-Niob-Chrom, DFG Final Report, 1990.

  41. M. Sluiter and P.E.A. Turchi, Phase Stability in Ti-V and Ti-Cr Alloys: A Theoretical Investigation, Phys. Rev. B, 1991, 43(15), p 12251-12266. https://doi.org/10.1103/PhysRevB.43.12251

    Article  ADS  Google Scholar 

  42. K.C. Chen, S.M. Allen, and J.D. Livingston, Stoichiometry and Alloying Effects on the Phase Stability and Mechanical Properties of TiCr2-Base LAVES Phase Alloys, MRS Online Proc. Libr., 1994, 364, p 1401-1406. https://doi.org/10.1557/PROC-364-1401

    Article  Google Scholar 

  43. K.C. Chen, S.M. Allen, and J.D. Livingston, Microstructures of two-Phase Ti–Cr Alloys Containing the TiCr2 Laves Phase Intermetallic, J. Mater. Res., 1997, 12(6), p 1472-1480. https://doi.org/10.1557/JMR.1997.0203

    Article  ADS  Google Scholar 

  44. K.C. Chen, S.M. Allen, and J.D. Livingston, Factors Affecting the Room-Temperature Mechanical Properties of TiCr2-Base Laves Phase Alloys, Mater. Sci. Eng. A, 1998, 242(1), p 162-173. https://doi.org/10.1016/S0921-5093(97)00526-1

    Article  Google Scholar 

  45. J.C. Zhao, M.R. Jackson, and L.A. Peluso, Mapping of the Nb-Cr-Ti Phase Diagram Using Difusion Multiples, Z. Metallkd., 2004, 95(3), p 142-146. https://doi.org/10.3139/146.017927

    Article  Google Scholar 

  46. W. Baumann, A. Leineweber, and E.J. Mittemeijer, The Kinetics of a Polytypic Laves Phase Transformation in TiCr2, Intermetallics, 2011, 19(4), p 526-535. https://doi.org/10.1016/j.intermet.2010.11.027

    Article  Google Scholar 

  47. M. Chandran, P.R. Subramanian, and M.F. Gigliotti, First Principles Calculation of mIxing Enthalpy of β-Ti with Transition Elements, J. Alloys Compd., 2013, 550, p 501-508. https://doi.org/10.1016/j.jallcom.2012.10.141

    Article  Google Scholar 

  48. R. Sahara, S. Emura, and K. Tsuchiya, Theoretical Investigation of Effect of Alloying Elements on Phase Stability in Body-Centered Cubic Ti-X alloys (X=V, Cr, Fe Co, Nb, and Mo), J. Alloys Compd., 2015, 634, p 193-199. https://doi.org/10.1016/j.jallcom.2015.02.005

    Article  Google Scholar 

  49. L. Zhu, Q. Zhang, Z. Chen, C. Wei, G.-M. Cai, L. Jiang, Z. Jin, and J.-C. Zhao, Measurement of Interdiffusion and Impurity Diffusion Coefficients in the bcc Phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) Binary Systems Using Diffusion Multiples, J. Mater. Sci., 2017, 52(6), p 3255-3268. https://doi.org/10.1007/s10853-016-0614-0

    Article  ADS  Google Scholar 

  50. S. Xu, H. Zhang, G. Yang, Y. Liang, X. Xu, J. He, and J. Lin, Phase Equilibria in the Ti–Al–Cr System at 1000 °C, J. Alloys Compd., 2020, 826, 154236. https://doi.org/10.1016/j.jallcom.2020.154236

    Article  Google Scholar 

  51. K. Ohsaka, E.H. Trinh, J.C. Holzer, and W.L. Johnson, Gibbs Free Energy Difference Between the Undercooled Liquid and the β PHase of a Ti-Cr Alloy, Appl. Phys. Lett., 1992, 60(9), p 1079-1081. https://doi.org/10.1063/1.106450

    Article  ADS  Google Scholar 

  52. J.-C. Crivello, Private communication, SQS calculations of the BCC-Ti, 2022.

  53. J. Pavlů, J. Vřešt’ál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr–Hf and Cr–Ti Systems: Reassessment Using First-Principles Results, Calphad, 2010, 34(2), p 215-221. https://doi.org/10.1016/j.calphad.2010.03.003

    Article  Google Scholar 

  54. M.H.F. Sluiter, Lattice Stability Prediction of Elemental Tetrahedrally Close-packed Structures, Acta Mater., 2007, 55(11), p 3707-3718. https://doi.org/10.1016/j.actamat.2007.02.016

    Article  ADS  Google Scholar 

  55. X.-Q. Chen, W. Wolf, R. Podloucky, and P. Rogl, Ab Initio Study of Ground-State Properties of the Laves Phase Compounds TiCr2, ZrCr2, and HfCr2, Phys. Rev. B, 2005, 71, 174101. https://doi.org/10.1103/PhysRevB.71.174101

    Article  ADS  Google Scholar 

  56. L. Kaufman and H. Nesor, Coupled Phase Diagrams and Thermochemical data for Transition Metal Binary Systems - I, Calphad, 1978, 2(1), p 55-80. https://doi.org/10.1016/0364-5916(78)90005-6

    Article  Google Scholar 

  57. I. Ansara, A.T. Dinsdale, and M.H. Rand, COST 507: Thermochemical Database for Light Metal Alloys, Office for Official Publications of the European, Communities, 1998, 2, p 1-420.

    Google Scholar 

  58. J.Y. Lee, J.H. Kim, S.I. Park, and H.M. Lee, Phase Equilibrium of the Ti–Cr–V Ternary System in the Non-Burning β-Ti alloy Region, J. Alloys Compd., 1999, 291(1), p 229-238. https://doi.org/10.1016/S0925-8388(99)00144-9

    Article  Google Scholar 

  59. G. Ghosh, Thermodynamic and Kinetic Modeling of the Cr-Ti-V System, J. Phase Equilibria., 2002, 23(4), p 310-328. https://doi.org/10.1361/105497102770331569

    Article  ADS  Google Scholar 

  60. D.M. Cupid, M.J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H.J. Seifert, Thermodynamic Assessment of the Cr–Ti and first Assessment of the Al–Cr–Ti Systems, Intermetallics, 2011, 19(8), p 1222-1235. https://doi.org/10.1016/j.intermet.2011.03.031

    Article  Google Scholar 

  61. H. Sun, Y. Zhang, Q. Pan, Y. Liu, W. Zheng, and X.-G. Lu, Thermodynamic Modeling of the Ni-Ti-Cr System and the B2/B19′ Martensitic Transformation, Calphad, 2022, 79, 102505. https://doi.org/10.1016/j.calphad.2022.102505

    Article  Google Scholar 

  62. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, 2(2), p 65-71. https://doi.org/10.1107/S0021889869006558

    Article  ADS  Google Scholar 

  63. A. Berche, C. Rado, O. Rapaud, C. Guéneau, and J. Rogez, Thermodynamic Study of the U-Si System, J. Nucl. Mater., 2009, 389(1), p 101-107. https://doi.org/10.1016/j.jnucmat.2009.01.014

    Article  ADS  Google Scholar 

  64. P. Gardie, G. Bordier, J.J. Poupeau, and J. Le Ny, Thermodynamic Activity Measurements of U-Fe and U-Ga alloys by Mass Spectrometry, J. Nucl. Mater., 1992, 189(1), p 85-96. https://doi.org/10.1016/0022-3115(92)90422-H

    Article  ADS  Google Scholar 

  65. M. Baıchi, C. Chatillon, C. Guèneau, and S. Chatain, Mass Spectrometric Study of UO2–ZrO2 Pseudo-Binary System, J. Nucl. Mater., 2001, 294(1), p 84-87. https://doi.org/10.1016/S0022-3115(01)00477-9

    Article  ADS  Google Scholar 

  66. S. Chatain, T. Alpettaz, S. Gossé, and C. Guéneau, Thermodynamic Activity Measurements in Nickel-Base Industrial Alloys and Steels by Knudsen cell – Mass Spectrometry, J. Chem. Thermodyn., 2017, 114, p 144-150. https://doi.org/10.1016/j.jct.2017.01.015

    Article  Google Scholar 

  67. J. Safarian and T.A. Engh, Vacuum Evaporation of Pure Metals, Metall. Mater. Trans. A, 2013, 44(2), p 747-753. https://doi.org/10.1007/s11661-012-1464-2

    Article  Google Scholar 

  68. Z.-K. Liu, Computational Thermodynamics and its Applications, Acta Mater., 2020, 200, p 745-792. https://doi.org/10.1016/j.actamat.2020.08.008

    Article  ADS  Google Scholar 

  69. G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6(1), p 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  70. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59(3), p 1758-1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  71. P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50(24), p 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  72. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18), p 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  73. J.-C. Crivello, R. Souques, A. Breidi, N. Bourgeois, and J.-M. Joubert, ZenGen, a tool to Generate Ordered Configurations for Systematic First-Principles Calculations: The Cr–Mo–Ni–Re System as a Case Study, Calphad, 2015, 51, p 233-240. https://doi.org/10.1016/j.calphad.2015.09.005

    Article  Google Scholar 

  74. H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13(12), p 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  75. A.T. Dinsdale, SGTE data for pure elements, Calphad, 1991, 15(4), p 317-425. https://doi.org/10.1016/0364-5916(91)90030-N. Version 5.0 (2009) https://www.sgte.net/en/free-pure-substance-database

  76. Z.H. Yan, T. Klassen, C. Michaelsen, M. Oehring, and R. Bormann, Inverse Melting in the Ti-Cr System, Phys. Rev. B, 1993, 47(14), p 8520-8527. https://doi.org/10.1103/PhysRevB.47.8520

    Article  ADS  Google Scholar 

  77. W. Baumann, Private Communication, DTA Experiments on the Cr-Ti System, 2012.

  78. J.P. Gros, I. Ansara, M. Allibert, Prediction of alpha/beta equilibria in Titanium-based alloys containing Al, Mo, Zr, Cr (Part I), in: Societé Française de Métallurgie, Cannes, 1988, p 1553.

  79. A. van de Walle, Q. Hong, S. Kadkhodaei, and R. Sun, The Free Energy of Mechanically Unstable Phases, Nat. Commun., 2015, 6(1), p 7559. https://doi.org/10.1038/ncomms8559

    Article  ADS  Google Scholar 

  80. S. Kadkhodaei, Q.-J. Hong, and A. van de Walle, Free Energy Calculation of Mechanically Unstable but Dynamically Stabilized bcc Titanium, Phys. Rev. B, 2017, 95(6), 064101. https://doi.org/10.1103/PhysRevB.95.064101

    Article  ADS  Google Scholar 

  81. A. Flores, To be published, Experimental investigation of the Cr-Mo-Ti system, 2023.

Download references

Acknowledgment

The authors thank Shigehiro Ishikawa for his contribution to the EPMA, DTA, and XRD experiments and Thierry Alpettaz for KEMS activity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Joubert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Thaddeus B. “Ted” Massalski. The issue was organized by David E. Laughlin, Carnegie Mellon University; John H. Perepezko, University of Wisconsin–Madison; Wei Xiong, University of Pittsburgh; and JPED Editor-in-Chief Ursula Kattner, National Institute of Standards and Technology (NIST).

Supplementary Information

Below is the link to the electronic supplementary material.

Heating-rate dependence of the DTA onset temperatures of the C15-C36 and C36-C14 transformations of Ti-rich samples.

Supplementary file1 (TIF 5440 kb)

Laves phase region of present assessment compared with experimental data.

Supplementary file2 (TIF 975 kb)

Rietveld refinement of 24 at.% Ti alloy treated at 1300°C. Identified phases: bcc.

Supplementary file3 (TIF 649 kb)

Rietveld refinement of 24 at.% Ti alloy treated at 1150°C. Identified phases: bcc + C15.

Supplementary file4 (TIF 672 kb)

Rietveld refinement of 48 at.% Ti alloy treated at 1100°C. Identified phases: bcc + C15.

Supplementary file5 (TIF 705 kb)

Rietveld refinement of 48 at.% Ti alloy treated at 1150°C. Identified phases: bcc + C36.

Supplementary file6 (TIF 716 kb)

Parameters of the thermodynamic database of the Cr–Ti system.

Supplementary file6 (TXT 7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, A., Chatain, S., Fossati, P. et al. Experimental Investigation and Thermodynamic Assessment of the Cr–Ti System. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01090-2

Keywords

Navigation