Skip to main content

Advertisement

Log in

Phase Equilibria in the Ti-Rich Portion of the Ti-Ga-Sn System

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase equilibria of the Ti-Ga-Sn system have been determined at primary crystallization and at 1000 °C in the composition interval ~ 50-100 at.% Ti based on differential thermal analysis, x-ray powder diffraction, scanning electron microscopy and electron microprobe analysis. Partial liquidus and solidus projections, the melting diagram, a number of vertical sections, isothermal section at 1000 °C, as well as the reaction scheme (Scheil diagram) for the Ti-Ga-Sn system were constructed. A ternary compound Ti5GaSn2 (τ) (Nb5SiSn2-type structure, tI32-I4/mcm), found by us previously, forms by peritectic reaction L + Ti2(Sn, Ga) + Ti5(Sn, Ga)3-4 ⇄ τ at 1500 °C and has a wide homogeneity range from 9 to 23.5 at.% Ga at solidus temperature and from 4 to 34 at.% Ga at 1000 °C, and located along constant composition of ~ 62.5 at.% Ti. D88-type compounds Ti5Sn3 and Ti5Ga4 form a continuous solid solution, denoted Ti5(Sn, Ga)3-4, at all investigated temperatures. Ga-poor part of it (below ~ 12.5 at.% Ga) forms by an interstitial mechanism, while in the interval above ~ 12.5 at.% Ga it is a substitutional phase. Isostructural compounds Ti2Sn and Ti2Ga also form a continuous solid solution Ti2(Sn, Ga) at solidus temperatures, which decomposes with decreasing temperature. Meanwhile, at 1000 °C, one more continuous solid solution Ti3(Sn, Ga) forms between isostructural compounds Ti3Sn and Ti3Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Yang, X. Pang, M. Pang, Y. Zhao, W. Yang, J. Han, and Y. Zhan, Insights into Atomic Scale Structure and Interfacial Fracture Behaviors of Ti(0001)/Ti3Sn(0001) Interface, Vacuum, 2020, 183, p 109791. https://doi.org/10.1016/j.vacuum.2020.109791

    Article  ADS  Google Scholar 

  2. J. Yang, X. Pang, J. Han, M. Pang, F. Wei, W. Yang, and Y. Zhan, Influence of Vacancy on the Mechanical Behavior, Thermodynamic Properties and Electronic Structure of Orthorhombic Ti3Sn from First-Principles Calculations, Vacuum, 2021, 188, p 110178. https://doi.org/10.1016/j.vacuum.2021.110178

    Article  ADS  Google Scholar 

  3. A. Biesiekierski, J. Wang, M.A.-H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661-1669. https://doi.org/10.1016/j.actbio.2012.01.018

    Article  Google Scholar 

  4. T. Hashimoto, M. Nakamura, and S. Takeuchi, Plastic Deformation of Ti3Sn, Mater. Trans. JIM, 1990, 31(3), p 195–199. https://doi.org/10.2320/matertrans1989.31.195

    Article  Google Scholar 

  5. O.V. Vdovychenko, M.V. Bulanova, Yu.V. Fartushna, and A.A. Shcheretsky, Dynamic Mechanical Behavior of Intermetallic Ti3Sn, Scr. Mater., 2010, 62(10), p 758–761. https://doi.org/10.1016/j.scriptamat.2010.01.036

    Article  Google Scholar 

  6. O.V. Vdovychenko, O.M. Ivanova, Yu.N. Podrezov, M.V. Bulanova, and Yu.V. Fartushna, Mechanical Behavior of Homogeneous and Nearly Homogeneous Ti3Sn: Role of Composition and Microstructure, Mater. Des., 2017, 125, p 26–34. https://doi.org/10.1016/j.matdes.2017.03.074

    Article  Google Scholar 

  7. O. Ivanova, M. Karpets, A.R. Yavari, K. Georgarakis, and Yu. Podrezov, In situ X-ray Diffraction Study of the Phase Transformation in the Non-Stoichiometric Intermetallic Compound Ti3Sn, J. Alloys Compd., 2014, 582, p 360–363. https://doi.org/10.1016/j.jallcom.2013.07.198

    Article  Google Scholar 

  8. M. Du, L. Cui, Y. Ren, and F. Liu, In-Situ Synchrotron High Energy X-Ray Diffraction Study of Phase Transformation of Intermetallic Ti3Sn, Mater. Lett., 2019, 252, p 161–164. https://doi.org/10.1016/j.matlet.2019.05.121

    Article  Google Scholar 

  9. N.V. Antonova, O.I. Bankovsky, S.A. Firstov, L.D. Kulak, L.A. Tretyachenko, and T.. Ya.. Velikanova, Structure and Mechanical Properties of the Ti-Ga-Si Alloys in the Ti-Rich Corner, J. Mater. Sci., 1999, 34, p 3413–3416. https://doi.org/10.1023/A:1004689317148

    Article  ADS  Google Scholar 

  10. K.J. Qiu, W.J. Lin, F.Y. Zhou, H.Q. Nan, B.L. Wang, L. Li, J.P. Lin, Y.F. Zheng, and Y.H. Liu, Ti-Ga Binary Alloys Developed as Potential Dental Materials, Mater. Sci. Eng. C, 2014, 34, p 474–483. https://doi.org/10.1016/j.msec.2013.10.004

    Article  Google Scholar 

  11. A. Cochis, B. Azzimonti, R. Chiesa, L. Rimondini, and M. Gasik, Metallurgical Gallium Additions to Titanium Alloys Demonstrate a Strong Time-Increasing Antibacterial Activity without any Cellular Toxicity, ACS Biomater. Sci. Eng., 2019, 5, p 2815–2820. https://doi.org/10.1021/acsbiomaterials.9b00147

    Article  Google Scholar 

  12. M.V. Bulanova, I.V. Fartushna, K.A. Meleshevich et al., XII International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, p. 52, 2013

  13. I. Fartushna, M. Bulanova, C. Colinet, and J.C. Tedenac, Stability of the D8m-Ti5Sn2Ga Compound. Experimental Determinations and First Principle Calculations, J. Chem. Thermodyn., 2014, 78, p 269–277. https://doi.org/10.1016/j.jct.2014.04.008

    Article  Google Scholar 

  14. M. Bulanova, J.C. Tedenac, I. Fartushna, R.M. Ayral, A. Samelyuk, and S. Fedirko, Isothermal Section of the Ti-Ga-Sn System at 1300°C, J. Alloys Compd., 2017, 695, p 3648–3654. https://doi.org/10.1016/j.jallcom.2016.11.382

    Article  Google Scholar 

  15. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn, ASM International, Metals Park, OH, 1990

  16. P. Rogl, Titanium: Physico-Chemical Properties of its Compounds and Alloys. IAEA, Vienna, 1983.

    Google Scholar 

  17. M. Bulanova, Yu. Podrezov, Yu. Fartushnaya, A.N. Rafal, and S.A. Firstov, Structure and Mechanical Properties of the Alloys of the Ti−Sn System, Dop. Nats. Akad. Nauk Ukr., 2006, 11, p 101–108.

    Google Scholar 

  18. S. Banumathy, and A.K. Singh, Rietveld Refinement of the A3B (D019) and A2B (B82) Phases in Ti−Sn and Ti−Ga Alloys, Intermetallics, 2011, 19(10), p 1594–1598. https://doi.org/10.1016/j.intermet.2011.06.004

    Article  Google Scholar 

  19. N.V. Antonova, and L.A. Tretyachenko, Phase Diagram of the Ti−Ga System, J. Alloys Compd., 2001, 317–318, p 398–405. https://doi.org/10.1016/S0925-8388(00)01416-X

    Article  Google Scholar 

  20. F. Yin, J.C. Tedenac, and F. Gascoin, Thermodynamic Modelling of the Ti-Sn System and Calculation of the Co-Ti-Sn System, Calphad, 2007, 31(3), p 370–379. https://doi.org/10.1016/j.calphad.2007.01.003

    Article  Google Scholar 

  21. V.A. Saltykov, K.A. Meleshevich, A.V. Samelyuk, M.V. Bulanova, and J.C. Tedenac, The Melting Diagram of the Ti-Zr-Sn System Below 40 at.% Sn, J. Alloys Compd., 2009, 473(1–2), p 341–346. https://doi.org/10.1016/j.jallcom.2008.05.085

    Article  Google Scholar 

  22. M. Bulanova, I. Fartushna, A. Samelyuk, K. Meleshevich, I. Tikhonova, and J.C. Tedenac, Solidus Surface of Zr-Co-Sn System, J. Phase Equilib. Diffus., 2020, 41, p 329–346. https://doi.org/10.1007/s11669-020-00791-8

    Article  Google Scholar 

  23. J.B. Li, J.C. Tedenac, and M.C. Record, Thermodynamic analysis of the Ga-Ti System, J. Alloys Compd., 2003, 358(1–2), p 133–141. https://doi.org/10.1016/S0925-8388(03)00131-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Fartushna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulanova, M., Fartushna, I., Samelyuk, A. et al. Phase Equilibria in the Ti-Rich Portion of the Ti-Ga-Sn System. J. Phase Equilib. Diffus. 45, 132–155 (2024). https://doi.org/10.1007/s11669-024-01100-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-024-01100-3

Keywords

Navigation