Skip to main content
Log in

Phase Equilibria in Low-Temperature Regions of Phase Diagrams

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

This article considers the features and fundamental difficulties of studying low-temperature phase equilibria associated with an exponential increase in the required duration of syntheses with a decrease in temperature. Methods for accelerating the achievement of equilibrium, including the use of salt solvents, are also considered. The results of phase equilibria studies in the SrF2–LaF3 system using sodium nitrate and in the ZrO2–Sc2O3 system using sodium sulfate as fluxes are presented. The methods of extrapolation of phase diagrams to absolute zero temperature in accordance with the third law of thermodynamics are considered. Phase diagrams of the Au–Cu, Cu–Pd, Ni–Pt, and ZrO2–Y2O3 systems are presented. Phase equilibria with plagioclase ordering are considered separately, and the phase diagram of the albite–anorthite (NaAlSi3O8–CaAl2Si2O8) system is presented. As the temperature approaches absolute zero, the homogeneity region of labradorite shrinks to the compound NaCaAl3Si5O16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright© 2024 The American Ceramic Society, all rights reserved.

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.B. Massalski, Phase Diagrams in Materials Science, Metall. Trans., 1989, 20A, p 1295-1323.

    Article  Google Scholar 

  2. J.P. Abriata and D.E. Laughlin, The Third Law of Thermodynamics and Low Temperature Phase Stability, Prog. Mater. Sci., 2004, 48(3), p 367-387.

    Article  Google Scholar 

  3. D.E. Laughlin and W.A. Soffa, The Third Law of Thermodynamics: Phase Equilibria and Phase Diagrams at Low Temperatures, Acta Mater., 2018, 45, p 49-61.

    Article  ADS  Google Scholar 

  4. P.P. Fedorov, Anneal Time Determined by Studying Phase Transitions in Solid Binary Systems, Russ. J. Inorg. Chem., 1992, 37(8), p 968-973.

    Google Scholar 

  5. P.P. Fedorov, Third Law of Thermodynamics as Applied to Phase Diagrams, Russ. J. Inorg. Chem., 2010, 55(11), p 1722-1739. https://doi.org/10.1134/S0036023610110100

    Article  CAS  Google Scholar 

  6. P.P. Fedorov and E.V. Chernova, The Conditions for the Solid State Synthesis of Solid Solutions in Zirconia and Hafnia Systems with the Oxides of Rare Earth Elements, Condens. Matter Interphases., 2022, 24(4), p 537-544. https://doi.org/10.17308/kcmf.2022.24/10558

    Article  CAS  Google Scholar 

  7. F.M. Spiridonov, L.N. Popova, and R. Ya, Popil’skii, On the Phase Relations and Electrical Conductivity in the System ZrO2-Sc2O3, J. Solid State Chem., 1970, 2, p 430-438.

    Article  ADS  CAS  Google Scholar 

  8. C. Pascual and P. Duran, Subsolidus Phase Equilibria and Ordering in the System ZrO2-Y2O3, J. Am. Ceram. Soc., 1983, 66, p 23-28.

    Article  CAS  Google Scholar 

  9. V.S. Stubican, G.S. Corman, J.R. Hellmann, G. Sent, Phase Relationships in Some ZrO2 System Advanced in Ceramics. Science and Technology of Zirconia. II. Ed. N. Clausen, M. Rühle, A. Heuer, Columbus, OH, 1984, 12, p 96-106.

  10. M. Yashima, M. Kakihana, and M. Yoshimura, Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application, Solid State Ionics, 1996, 86, p 1131-1149.

    Article  Google Scholar 

  11. A.A. Popov, A.D. Varygin, P.E. Plyusnin, M.R. Sharafutdinov, S.V. Korenev, A.N. Serkova, and Yu.V. Shubin, J. Alloys Compd., 2021, 891, p 161974. https://doi.org/10.1016/j.jallcom.2021.161974

    Article  CAS  Google Scholar 

  12. P.P. Fedorov, A.A. Alexandrov, V.V. Voronov, M.N. Mayakova, A.E. Baranchikov, and V.K. Ivanov, Low-Temperature Phase Formation in the SrF2 - LaF3 System, J. Am. Ceram. Soc., 2021, 104(6), p 2836-2848. https://doi.org/10.1111/jace.17666

    Article  CAS  Google Scholar 

  13. P.P. Fedorov, Phase Diagrams of Lead Difluoride Systems with Rare-Earth Fluorides, Russ. J. Inorg. Chem., 2021, 66(2), p 245-252. https://doi.org/10.1134/S0036023621020078

    Article  CAS  Google Scholar 

  14. Y. Igami, S. Ohi, and A. Miyake, Sillimanite-Mullite Transformation Observed in Synchrotron X-ray Diffraction Experiments, J. Am. Ceram. Soc., 2017, 100, p 4928-4937. https://doi.org/10.1111/jace.15020

    Article  CAS  Google Scholar 

  15. V. Manivannan, P. Parhi, and J.W. Kramer, Metathesis Synthesis and Characterization of Complex Metal Fluoride, KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) Using Mechanochemical Activation, Bull. Mater. Sci., 2008, 31(7), p 987-993.

    Article  CAS  Google Scholar 

  16. J. Lee, Q. Zhang, and F. Saito, Synthesis of Nano-Sized Lanthanum Oxyfluoride Powders by Mechanochemical Processing, J. Alloys Comp., 2003, 348, p 214-219.

    Article  CAS  Google Scholar 

  17. A.A. Luginina, A.E. Baranchikov, A.I. Popov, and P.P. Fedorov, Preparation of Barium Monohydrofluoride BaF2·HF from Nitrate Aqueous Solutions, Mater. Res. Bull., 2014, 49(1), p 199-205. https://doi.org/10.1016/j.materresbull.2013.08.074

    Article  CAS  Google Scholar 

  18. V.V. Gusarov, Fast Solid-Phase Chemical Reactions, Russ. J. Gen. Chem., 1997, 67(12), p 1846-1851.

    CAS  Google Scholar 

  19. W. Eysel, Crystal Chemistry of the system Na2SO4-K2SO4-K2CrO4-Na2CrO4 and of Glaserite Phase, Am. Mineral., 1973, 58, p 736-747.

    CAS  Google Scholar 

  20. N.V. Shchipalkina, I.V. Pekov, S.N. Britvin, N.N. Koshlyakova, and E.G. Sidorov, Alkali Sulfates with Aphthitalite-like Structures from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia. III. Solid Solutions and Exsolutions, Can. Mineral., 2021, 59, p 713-727. https://doi.org/10.3749/canmin.2000105

    Article  CAS  Google Scholar 

  21. M. Liu and R.A. Yund, NaSi-CaAl Interdiffusion in Plagioclase, Am. Mineral., 1992, 77, p 275-283.

    CAS  Google Scholar 

  22. M. Yoshimura, K.J. Kim, E. Tani, and S. Somiya, Establishment of the Equilibrium Phase Diagram in Fluorite-Related Systems, ZrO2-CeO2 and SrF2–LaF3, by Hydrothermal Technique, Solid State Ionics, 1988, 28-30, p 452-457.

    Article  Google Scholar 

  23. X. Xia, A. Pant, X. Zhou, E.A. Dobretsova, A.B. Bard, M.B. Lim, J.Y.D. Roh, D.R. Gamelin, and P.J. Pauzauskie, Hydrothermal Synthesis and Solid-State Laser Refrigeration of Ytterbium-Doped Potassium-Lutetim-Fluoride (KLF) Microcrystals, Chem. Mater., 2021, 33, p 4417-4424.

    Article  CAS  Google Scholar 

  24. J. Warshay and R. Roy, Polymorphism of the Rare Earth Sesquioxides, J. Phys. Chem., 1961, 65, p 2048.

    Article  Google Scholar 

  25. J.-P. Traverse, Contribution au d”eveloppement de méthodes d’expérimentation à température élevée. Application à l’étude du polymorphisme des sequioxydes de terres rares et des changements de phases dans les systèmes zircone-chaux et zircone-oxyde de strontium (Contribution to the development of high temperature experimental methods. Application to the study of polymorphism of rare earth sequioxides and phase changes in zirconia-lime and zirconia-strontium oxide systems), Thesis. Grenoble: L’Université Scientifique et Medicale de Grenoble, 1971, 150 p.

  26. C. Boulesteix, Handbook on the Physics and Chemistry of Rare Earth, Eds Gschneidner K.A., Eyring L. Amsterdam: North-Holland Publ. Company, 1982, Ch. 44, p. 321.

  27. V.B. Glushkova, Polymorphism of Rare-Earth Oxides. Nauka, Leningrad, 1967. , (in Russian)

    Google Scholar 

  28. P.P. Fedorov, M.V. Nazarkin, and R.M. Zakalyukin, On Polymorphism and Morphotropism of Rare-Earth Sesquioxides, Crystallogr. Rep., 2002, 47(2), p 281-286. https://doi.org/10.1134/1.1466504

    Article  ADS  CAS  Google Scholar 

  29. P.P. Fedorov and A.A. Alexandrov, Synthesis of Inorganic Fluorides in Molten Salt Fluxes and Ionic Liquid Mediums, J. Fluorine Chem., 2019, 227, p 109374.

    Article  CAS  Google Scholar 

  30. P.P. Fedorov, M.N. Mayakova, A.A. Alexandrov, V.V. Voronov, S.V. Kuznetsov, A.E. Baranchikov, and V.K. Ivanov, The Melt of Sodium Nitrate as a Medium for Synthesis of Fluorides, Inorganics, 2018, 6(2), p 38-55. https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  31. P.P. Fedorov, V.Yu. Proydakova, S.V. Kuznetsov, V.V. Voronov, A.A. Pynenkov, and K.N. Nishchev, Phase Diagram of the Li2SO4-Na2SO4 System, J. Am. Ceram. Soc., 2020, 103(5), p 3390-3400. https://doi.org/10.1111/jace.16996

    Article  CAS  Google Scholar 

  32. B.P. Sobolev and K.B. Seiranian, Phase Diagrams of the SrF2-(Y, Ln)F3 Systems, J. Solid State Chem., 1981, 39(3), p 337-344. https://doi.org/10.1016/0022-4596(81)90268-1

    Article  ADS  CAS  Google Scholar 

  33. M. Yoshimura, K.J. Kim, and S. Somiya, Revised Subsolidus Phase Diagram of the System SrF2-LaF3, Solid State Ionics, 1986, 18-19, p 1211-1216. https://doi.org/10.1016/0167-2738(86)90336-X

    Article  Google Scholar 

  34. M.A. Bredig, The Order-Disorder (λ) Transition in UO2 and Other Solids of the Fluorite Type of Structure, Colloq. Int. CNRS, 1972, 205, p 183-197.

    Google Scholar 

  35. J. Eapen and A. Annamareddy, Entropic Crossovers in Superionic Fluorites from Specific Heat, Ionics, 2017, 23, p 1043-1047. https://doi.org/10.1007/s11581-017-2007-z

    Article  CAS  Google Scholar 

  36. P.C.M. Fossati, A. Chartier, and A. Boulle, Structural Aspects of the Superionic Transition in AX2 Compounds with the Fluorite Structure, Front. Chem., 2021, 9, p N723507. https://doi.org/10.3389/fchem.2021.723507

    Article  CAS  Google Scholar 

  37. T. Sekiya, T. Yamada, H. Hayashi, and T. Noguchi, High Temperature Phase in the ZrO2-Sc2O3 System, J. Chem. Soc. Jpn., 1974, 9, p p1629-1636. (in Japanese)

    Google Scholar 

  38. A.V. Shevchenko, I.M. Maister, and L.M. Lopato, Interaction in the HfO2-Sc2O3 and ZrO2-Sc2O3 Systems at High Temperatures, Neorganicheskie Materialy (Inorganic Materials), 1987, 23(8), p 1320-1324. (in Russian)

    CAS  Google Scholar 

  39. A.V. Zyrin, V.P. Redko, L.M. Lopato, A.V. Shevchenko, I.M. Maister, and Z.A. Zaitseva, Ordered Phases in ZrO2-Sc2O3 and HfO2-Sc2O3 Systems, Neorganicheskie materialy (Inorganic Materials), 1987, 23(8), p 1325-1329. (In Russian)

    CAS  Google Scholar 

  40. L.M. Lopato, V.P. Redko, G.I. Gerasimuk, and A.V. Shevchenko, Synthesis of Some Compounds of Zirconia and Hafnia with Oxides of REE, Powder Metall. Metal Ceram., 1990, 4, p 73-75. (in Russian)

    Google Scholar 

  41. I.M. Maister, L.M. Lopato, Z.A. Zaitseva, and A.V. Shevchenko, Interaction in the system ZrO2-Y2O3-Sc2O3 at 1300–1900 °C, Neorganicheskie materialy (Inorganic Materials), 1991, 27(11), p 2337-2340.

    CAS  Google Scholar 

  42. H. Fujimori, M. Yashima, M. Kakihana, and M. Yoshimura, Structural Changes of Scandia-Doped Zirconia Solid Solutions: Rietveld Analysis and Raman Scattering, J. Am. Ceram. Soc., 1998, 81(11), p 2885-2893.

    Article  CAS  Google Scholar 

  43. H. Fujimori, M. Yashima, M. Kakihana, and M. Yoshimura, β-Cubic Phase Transition of Scandia-Doped Zirconia Solid Solution: Calorimetry, X-ray Diffraction, and Raman Scattering, J. Appl. Phys., 2002, 91, p 6493-6498. https://doi.org/10.1063/1.1471576

    Article  ADS  CAS  Google Scholar 

  44. K. Wurst, E. Schweda, D.J.M. Bevan, J. Mohyla, K.S. Wallwork, and M. Hofmann, Single-Crystal Structure Determination of Zr50Sc12O118, Solid State Sci., 2003, 5, p 1491-1497.

    Article  ADS  CAS  Google Scholar 

  45. S. Meyer, E. Schweda, N.J.M. Meta, H. Boysen, M. Hoelzel, and T. Bredow, Neutron Powder Diffraction Study and DFT Calculations of the Structure of Zr10Sc4O26, Z. Kristallogr. (J. Crystallogr.), 2009, 224, p 539-543.

    Article  ADS  CAS  Google Scholar 

  46. M.R. Thornber and D.J.M. Bevan, Mixed Oxides of the Type MO2 Fluorite-M2O3. III Crystal Structures of the Intermediate Phases Zr5Sc2O15 and Zr3Sc2O12, Acta Crystallogr. B, 1968, 24, p 1183-1190.

    Article  ADS  CAS  Google Scholar 

  47. W. Nernst, The new heat theorem Methuen and Co., London, 1917, p313

    Google Scholar 

  48. F.E. Simon, Some Considerations Concerning Nernst’s Theorem, Z. Naturforschg. (J. Nat. Res.), 1951, 6, p 397-400. https://doi.org/10.1515/zna-1951-0717

    Article  ADS  Google Scholar 

  49. B. Hallstedt, Thermodynamic Assessment of the System MgO-Al2O3, J. Amer. Ceram. Soc., 1992, 75(6), p 1497-1507.

    Article  CAS  Google Scholar 

  50. D.E. Laughlin and T.B. Massalski, Construction of Equilibrium Phase Diagrams: Some Errors to be Avoided, Prog. Mater. Sci., 2020. https://doi.org/10.1016/j.pmatsci.2020.100715

    Article  Google Scholar 

  51. H. Okamoto, D.J. Chakrabarti, D.E. Laughlin, and T.B. Massalski, The Au− Cu (gold-copper) System, Bull. Alloy Phase Diagrams, 1987, 8(5), p 454-473.

    Article  CAS  Google Scholar 

  52. P.P. Fedorov and S.N. Volkov, Au-Cu Phase Diagram, Russ. J. Inorg. Chem., 2016, 61(6), p 772-775. https://doi.org/10.1134/S0036023616060061

    Article  CAS  Google Scholar 

  53. N.S. Kurnakov, S.F. Zemchuzny, and M. Zasedatelev, The Transformations in Alloys of Gold with Copper, J. Inst. Met. London, 1916, 15, p 305.

    Google Scholar 

  54. A.A. Popov, Yu.V. Shubin, P.E. Plyusnin, M.R. Sharafutdinov, and S.V. Korenev, Experimental Redetermination of the Cu–Pd Phase Diagram, J. Alloys Compd., 2019, 777, p 204. https://doi.org/10.1016/j.jallcom.2018.10.332

    Article  CAS  Google Scholar 

  55. P.P. Fedorov, Yu.V. Shubin, and E.V. Chernova, Cooper-Palladium Phase diagram, Russ. J. Inorg. Chem., 2021, 66(6), p 891-893. https://doi.org/10.1134/S0036023621050053

    Article  CAS  Google Scholar 

  56. P.R. Subramanian and D.E. Laughlin, Cu-Pd (Copper-Palladium), J. Phase Equilibria, 1991, 12, p 231-243. https://doi.org/10.1007/BF02645723

    Article  CAS  Google Scholar 

  57. B. Schönfeld, M. Engelke, and A.S. Sologubenko, Microstructure and Order in NiPt3, Philos. Mag., 2015, 95(10), p 1080-1092. https://doi.org/10.1080/14786435.2015.1019587

    Article  ADS  CAS  Google Scholar 

  58. P.P. Fedorov, A.A. Popov, Yu.V. Shubin, and E.V. Chernova, Phase Diagram of the Nickel-Platinum System, Russ. J. Inorg. Chem., 2022, 67(12), p 2018-2022. https://doi.org/10.1134/S0036023622601453

    Article  CAS  Google Scholar 

  59. X.-G. Lu, B. Sundman, and J. Ågren, Thermodynamic Assessments of the Ni–Pt and Al–Ni–Pt Systems, Calphad, 2009, 33, p 450-456. https://doi.org/10.1016/j.calphad.2009.06.002

    Article  CAS  Google Scholar 

  60. C.E. Dahmani, M.C. Cadeville, J.M. Sanchez, and J.L. Moran-Lopez, Ni-Pt Phase Diagram: Experiment and Theory, Phys. Rev. Lett., 1985, 55(11), p 1208. https://doi.org/10.1103/PhysRevLett.55.1208

    Article  ADS  CAS  PubMed  Google Scholar 

  61. L. Landau, Towards the Theory of Phase Transitions, JETP, 1937, 7, p 19-32. (in Russian)

    CAS  Google Scholar 

  62. R.B. Griffiths, Proposal for a Notation at Tricritical Points, Phys. Rev. B. J. Chem. Phys., 1973, 7(1), p 545-551.

    Article  ADS  CAS  Google Scholar 

  63. A. Aharony, Multicritical Points. In: Critical Phenomena, ed. F.J.W. Hahne, Lecture Notes in Physics, Berlin, Heidelberg: Springer, 1983, 186, p 209-258, https://doi.org/10.1007/3-540-12675-9_13

  64. M.A. Anisimov, E.E. Gorodetskii, and V.M. Zaprudskii, Phase Transitions with Coupled Order Parameters, Sov. Phys. Usp., 1981, 24(1), p 57-75. https://doi.org/10.1070/PU1981v024n01ABEH004612

    Article  ADS  Google Scholar 

  65. N.E. Phillips, 3He-4He Solutions, Annu. Rev. Phys. Chem., 1968, 19, p 559-584. https://doi.org/10.1146/annurev.pc.19.100168.003015

    Article  ADS  CAS  Google Scholar 

  66. B.N. Esel’son, V.N. Grigor’ev, V.G. Ivantsov, E. Ya. Rudavskiy, D.G. Sanikadze, I.A. Serbin, Quantum Fluid Solutions 3He-4He, Moscow: Nauka, 1973 (in Russian).

  67. J.R. Goldsmith and H.C. Heard, Subsolidus Phase Relations in the System CaCO3-MgCO3, J. Geol., 1961, 69(1), p 45-74.

    Article  ADS  CAS  Google Scholar 

  68. P.P. Fedorov, A.A. Alexandrov, S.V. Kuznetsov, V.V. Voronov, Comment on the paper Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 2015, 83, p 12-26, J. Chem. Therm. 2020, 149, p 106178 (7 pp), https://doi.org/10.1016/j.jct.2020.106178

  69. A.A. Smirnov, Molecular kinetic theory of metals, M.: Nauka, 1966 (in Russian).

  70. P.P. Fedorov and E.V. Chernova, Phase Diagrams of Zirconia Systems with Yttria and Scandia, Condens. Matter Interphases, 2023, 25(2), p 257-267. https://doi.org/10.17308/kcmf.2023.25/11106

    Article  CAS  Google Scholar 

  71. R.J. Gaboriaud, F. Paumier, and B. Lacroix, Disorder-Order Phase Transformation in a Fluorite-Related Oxide Film: in-situ X-ray Diffraction and Modeling of the Residual Stress Effects, Thin Solid Films, 2016, 601, p 84-88.

    Article  ADS  CAS  Google Scholar 

  72. P. Duwez, F.H. Brown, and F. Odell, The Zirconia-Yttria System, J. Electrochem. Soc., 1951, 98(9), p 356-362.

    Article  CAS  Google Scholar 

  73. M. Yashima, N. Ishizawa, T. Nama, and M. Yoshimura, Stable and Metastable Phase Relationships in the System ZrO2-ErO1.5, J. Am. Ceram. Soc., 1991, 74(3), p 510-513.

    Article  CAS  Google Scholar 

  74. M.A. Carpenter, Subsolidus Phase Relations of the Plagioclase Feldspar Solid Solution, Feldspars and their Reactions, ed. I. Parsons, NATO ASI Series C 421, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, p 221-269.

  75. J.D.C. McConnell, The Origin and Characteristics of the Incommensurate Structures in the Plagioclase Feldspars, Can. Mineral., 2008, 46, p 1389-1400. https://doi.org/10.3749/canmin.46.6.1389

    Article  CAS  Google Scholar 

  76. I. Parson, Feldspars Defined and Described: A Pair of Posters Publishing by the Mineralogical Society. Sources and Supporting Information, Mineral. Mag., 2010, 74, p 529-551. https://doi.org/10.1180/minmag.2010.074.3.529

    Article  CAS  Google Scholar 

  77. S.K. Filatov, A.P. Shablinskii, S.N. Volkov, and R.S. Bubnova, Forms of Solid Solution Ordering Upon Decreasing Temperature, J. Struct. Chem., 2017, 58, p 135-158. https://doi.org/10.1134/S0022476617010206

    Article  CAS  Google Scholar 

  78. S. Jin and H. Xu, Investigations of the Phase Relations Among e1, e2 and C1 Structures of Na-Rich Plagioclase Feldspars: A Single-Crystal X-Ray Diffraction Study, Acta Cryst., 2017, B73, p 992-1006. https://doi.org/10.1107/S2052520617010976

    Article  Google Scholar 

  79. S. Jin, H. Xu, X. Wang, R. Jacob, and D. Morgan, The Incommensurately Modulated Structures of Low-Temperature Labradorite Feldspars: A Single Crystal X-ray and Neutron Diffraction Study, Acta Cryst., 2020, B76, p 93-107.

    Google Scholar 

  80. D.E. Laughlin and T.B. Massalski, Construction of Equilibrium Phase Diagrams: Some Errors to be Avoided, Prog. Mater. Sci., 2021, 120, p 100715. https://doi.org/10.1016/j.pmatsci.2020.100715

    Article  Google Scholar 

  81. M.A. Carpenter, A “Conditional Spinodal” Within the Peristerite Miscibility Gap of Plagioclase Feldspars, Am. Miner., 1981, 66(5-6), p 553-560.

    CAS  Google Scholar 

  82. S. Sole, C. Schmetterer, and K.W. Richter, A Revision of the Sb-Te Binary Phase Diagram and Crystal Structure of the Modulated Phase Field, J. Phase Equilib. Diffus., 2022, 43, p 648-659.

    Article  CAS  Google Scholar 

  83. J.H. Muller, T. Petzel, and B. Hormann, Phase Study of the Binary System Lu2O3-LuF3 in the Temperature Range 1000–1750 K, Thermochim. Acta, 1997, 298, p 109-114. https://doi.org/10.1016/S0040-6031(97)00190-1

    Article  Google Scholar 

  84. E.G. Yarotskaya and P.P. Fedorov, Mullite and its Isomorphic Substitution, Condens. Matter Interphases, 2018, 20(4), p 537-544. https://doi.org/10.17308/kcmf.2018.20/626

    Article  CAS  Google Scholar 

  85. W.E. Cameron, Mullite; A Substituted Alumina, Am. Mineralog., 1977, 62(7-8), p 747-755.

    CAS  Google Scholar 

  86. S. Padlewski, V. Heine, and G.D. Price, A Microscopic Model for a Very Stable Incommensurate Modulated Mineral: Mullite, J. Phys. Condens. Matter, 1993, 5, p 3417-3430. https://doi.org/10.1088/0953-8984/5/21/004

    Article  ADS  CAS  Google Scholar 

  87. P.P. Fedorov and E.G. Yarotskaya, Zirconium dioxide, Condens. Matter Interphases, 2021, 23(2), p 169-187. https://doi.org/10.17308/kcmf.2021.23/3427

    Article  Google Scholar 

  88. I. Prigogine and R. Defay, Chemical Thermodynamics. Longman Green and Co. London et al., 1954.

  89. M.C. Bhardwaj and R. Roy, Effect of High Pressure on Crystalline Solubility in the System NaCl-KCl, Phys. Chem. Sol., 1971, 32, p 1607-1693.

    Article  ADS  Google Scholar 

  90. A. Schiraldi, E. Pezzati, and G. Chiodelli, Phase Diagram and Point Defect Parameters of the System CsBr-TlBr, Z. Phys. Chem. Neue Folge, 1978, 110, p 1-16.

    Article  CAS  Google Scholar 

  91. A.A. Eliseev, A.V. Lukashin, and A.A. Vertigel, Cryosol Synthesis of Al2-xCrxO3 Solid Solutions, Chem. Mater., 1999, 11, p 241-246.

    Article  CAS  Google Scholar 

  92. P.P. Fedorov, Nanotechnology and Material Science, Nanosyst. Phys. Chem. Math., 2020, 11(3), p 314-315. https://doi.org/10.17586/2220-8054-2020-11-3-314-315

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is deeply grateful to A.A. Alexandrov and V.Yu. Proidakova for conducting the experiments and E.V. Chernova for her help in the preparation of the manuscript. The study was supported by the Russian Science Foundation (project No. 22-13-00167) https://rscf.ru/project/22-13-00167/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel P. Fedorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Thaddeus B. “Ted” Massalski. The issue was organized by David E. Laughlin, Carnegie Mellon University; John H. Perepezko, University of Wisconsin–Madison; Wei Xiong, University of Pittsburgh; and JPED Editor-in-Chief Ursula Kattner, National Institute of Standards and Technology (NIST).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P. Phase Equilibria in Low-Temperature Regions of Phase Diagrams. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01099-7

Keywords

Navigation