Skip to main content
Log in

Thermodynamic Modeling of the (Ce and Sm)-Ru Binary Systems Based on Linear, Exponential, and Combined Models Aided by Ab-Initio Calculations

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic optimization of the Ln-Ru (where \({\text{Ln}} = {\text{Ce and Sm}}\)) binary systems was carried out by means of CALPHAD method. Our approach is based on the critical review of the available experimental data published in literature, including both phase equilibria and thermodynamic data. Nine intermediate phases:\({\text{Ln}}_{3} {\text{Ru}},\;{\text{Ce}}_{7} {\text{Ru}}_{3} ,\;{\text{Ce}}_{16} {\text{Ru}}_{9} ,\;{\text{Ce}}_{4} {\text{Ru}}_{3} ,\;{\text{Sm}}_{2} {\text{Ru}}_{5} ,\;{\text{Ru}}_{25} {\text{Sm}}_{44} ,\;{\text{and}}\;{\text{LnRu}}_{2}\) presented in both binary systems, were treated as stoichiometric compounds. The exponential and linear models were used to describe the temperature dependence of the excess quantities of liquid, \((\delta {\text{Ce}}),\;(\gamma {\text{Ce}}),\;(\beta {\text{Ce}}),(\alpha {\text{Sm}}),\;(\beta {\text{Sm}}),\;(\gamma {\text{Sm}})\;{\text{and}}\;({\text{Ru}})\) solid solution phases. They were compared with the combined linear–exponential temperature dependence of the resulting interaction energies. The self-consistent thermodynamic parameters used to describe the Gibbs energies of various phases in the Ln-Ru binary systems were obtained through Thermo-Calc software. The obtained calculated results are in excellent agreement with available phase equilibrium and thermodynamic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Schlapbach, and A. Züttel, Hydrogen-Storage Materials for Mobile Applications, Nature, 2001. https://doi.org/10.1038/35104634

    Article  Google Scholar 

  2. K.H.J. Buschow, Intermetallic Compounds of Rare-Earth and 3d Transition Metals, Rep. Prog. Phys., 1977, 40, p 1179. https://doi.org/10.1088/0034-4885/40/10/002/meta

    Article  ADS  Google Scholar 

  3. K.H.J. Buschow, Permanent Magnet Materials Based on Tetragonal Rare Earth Compounds of the Type RFe12-xMx, J. Magn. Magn. Mater., 1991, 100, p 79–89. https://doi.org/10.1016/0304-8853(91)90813-P

    Article  ADS  Google Scholar 

  4. X. Moya, S. Kar-Narayan, and N.D. Mathur, Caloric Materials Near Ferroic Phase Transitions, Nat. Mater., 2014, 13, p 439–450. https://doi.org/10.1038/nmat3951

    Article  ADS  Google Scholar 

  5. A.M. Tishin, Chapter 4 Magnetocaloric Effect in the Vicinity of Phase Transitions, Handb. Magn. Mater., 1999, 12, p 395–524. https://doi.org/10.1016/S1567-2719(99)12008-0

    Article  Google Scholar 

  6. N.A. de Oliveira, and P.J. von Ranke, Theoretical Aspects of the Magnetocaloric Effect, Phys. Rep., 2010, 489, p 89–159. https://doi.org/10.1016/j.physrep.2009.12.006

    Article  ADS  Google Scholar 

  7. Z. Hou, Q. Zhang, G. Xu, C. Gong, B. Ding, Y. Wang, H. Li, E. Liu, F. Xu, H. Zhang, Y. Yao, G. Wu, X.X. Zhang, and W. Wang, Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe, Nano Lett., 2018, 18, p 1274–1279. https://doi.org/10.1021/acs.nanolett.7b04900

    Article  ADS  Google Scholar 

  8. Z. Hou, Q. Zhang, G. Xu, S. Zhang, C. Gong, B. Ding, H. Li, F. Xu, Y. Yao, E. Liu, G. Wu, X.X. Zhang, and W. Wang, Manipulating the Topology of Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement, ACS Nano, 2019, 13, p 922–929. https://doi.org/10.1021/acsnano.8b09689

    Article  Google Scholar 

  9. M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Advanced Materials for Magnetic Cooling: Fundamentals and Practical Aspects, Appl. Phys. Rev., 2017. https://doi.org/10.1063/1.4983612

    Article  Google Scholar 

  10. L. Li, and M. Yan, Recent Progresses in Exploring the Rare Earth Based Intermetallic Compounds for Cryogenic Magnetic Refrigeration, J. Alloys Compd., 2020, 823, p 153810. https://doi.org/10.1016/j.jallcom.2020.153810

    Article  Google Scholar 

  11. J. Gaálová, J. Barbier, and S. Rossignol, Ruthenium Versus Platinum on Cerium Materials in Wet Air Oxidation of Acetic Acid, J. Hazard. Mater., 2010, 181, p 633–639. https://doi.org/10.1016/j.jhazmat.2010.05.059

    Article  Google Scholar 

  12. K. Gunnarsson, and K. Schönhammer, Photoemission from Ce Compounds: Exact Model Calculation in the Limit of Large Degeneracy, Phys. Rev. Lett., 1983, 50, p 604–607. https://doi.org/10.1103/PhysRevLett.50.604

    Article  ADS  Google Scholar 

  13. M.D.E. Weschke, C. Laubschat, R. Ecker, A. Hohr, and G. Kaindl, Bandlike Character of 4f Electrons in CeRh3, Phys. Rev. Lett., 1992, 69, p 1792–1795. https://doi.org/10.1103/PhysRevLett.69.1792

    Article  ADS  Google Scholar 

  14. T. Takeshita, W.E. Wallace, and R.S. Craig, Rare Earth lntermetallics as Synthetic Ammonia Catalysts, J. Catal., 1976, 44, p 236–243. https://doi.org/10.1016/0021-9517(76)90394-8

    Article  Google Scholar 

  15. R.M. Nix, T. Rayment, R.M. Lambert, J.R. Jennings, and G. Owen, An In Situ X-ray Diffraction Study of the Activation and Performance of Methanol Synthesis Catalysts Derived from Rare Earth-Copper Alloys, J. Catal., 1987, 106, p 216–234. https://doi.org/10.1016/0021-9517(87)90226-0

    Article  Google Scholar 

  16. A.P. Walker, and R.M. Lambert, Properties of the Ru(0001)/Ce-H2 Interface: A Model System for Transition-Metal/Rare-Earth Hydride Catalysts, J. Phys. Chem., 1992, 1, p 2265–2271.

    Article  Google Scholar 

  17. A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catal. Rev. Sci. Eng., 1996, 38, p 439–520. https://doi.org/10.1080/01614949608006464

    Article  Google Scholar 

  18. N. Saunders, and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide. Elsevier, Amsterdam, 1998.

    Google Scholar 

  19. L. Kaufman, and H. Bernstein, Computer Calculation of Phase Diagrams (With Special Reference to Refractory Metals). Academic Press Inc, New York, 1970.

    Google Scholar 

  20. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511804137

    Book  MATH  Google Scholar 

  21. G. Kaptay, Materials Equilibria in Macro-, Micro-and Nano-systems, Raszter Ny (2011)

  22. R. Schmid-Fetzer, D. Andersson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich, Assessment Techniques, Database Design and Software Facilities for Thermodynamics and Diffusion, Calphad, 2007, 31, p 38–52. https://doi.org/10.1016/j.calphad.2006.02.007

    Article  Google Scholar 

  23. G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335. https://doi.org/10.1007/s10853-012-6772-9

    Article  ADS  Google Scholar 

  24. N. Selhaoui, J. Charles, L. Bouirden, and J.C. Gachon, Optimization of the Binary Ce–Ru System, J. Alloys Compd., 1998, 269, p 166–172. https://doi.org/10.1016/S0925-8388(98)00125-X

    Article  Google Scholar 

  25. J.C. Gachon, J. Charles, and J. Hertz, Different Ways to Find the Thermodynamic Functions Describing the Formation of Binary Alloys Part 1 Comparison Between Models and Experimental Data, Calphad, 1985, 9, p 29–34. https://doi.org/10.1016/0364-5916(85)90028-8

    Article  Google Scholar 

  26. J. Charles, M. Notin, M. Rahmane, and J. Hertz, NANCYUN: A Laboratory Tool for Calculation of Binary Systems, J. Phase Equilibria, 1992, 13, p 497–506. https://doi.org/10.1007/BF02665762

    Article  Google Scholar 

  27. B. Jansson, Computer Operated Methods for Equilibrium Calculations and Evaluation of Thermochemical Model Parameters. Royal Institute of Technology, Stockholm, 1984.

    Google Scholar 

  28. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad Comput., 1985, 9, p 153–190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  Google Scholar 

  29. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, and R. Schmid-Fetzer, On the Calculation of Multicomponent Stable Phase Diagrams, J. Phase Equilibria, 2001, 22, p 373–378. https://doi.org/10.1361/105497101770332910

    Article  Google Scholar 

  30. G. Kaptay, A New Equation for the Temperature Dependence of the Excess Gibbs Energy of Solution Phases, Calphad, 2004, 28, p 115–124. https://doi.org/10.1016/j.calphad.2004.08.005

    Article  Google Scholar 

  31. T. Abe, K. Ogawa, and K. Hashimoto, Analysis of Miscibility Gaps Based on the Redlich-Kister Polynomial for Binary Solutions, Calphad, 2012, 38, p 161–167. https://doi.org/10.1016/j.calphad.2012.06.006

    Article  Google Scholar 

  32. G. Kaptay, On the Tendency of Solutions to Tend Toward Ideal Solutions At High Temperatures, Metall. Mater. Trans. A, 2012, 43, p 531–543. https://doi.org/10.1007/s11661-011-0902-x

    Article  Google Scholar 

  33. J.F. Elliott, and C.H.P. Lupis, Correlation Between Excess Entropy and Enthalpy Functions, Trans Metall. Soc. AIME., 1966, 236, p 130.

    Google Scholar 

  34. G. Kaptay, On the Abilities and Limitations of the Linear, Exponential and Combined Models to Describe The Temperature Dependence of the Excess Gibbs Energy of Solutions, Calphad, 2014, 44, p 81–94. https://doi.org/10.1016/j.calphad.2013.08.007

    Article  Google Scholar 

  35. W. Obrowski, Über den Aufbau des Systems Ruthenium-Cer, Int. J. Mater. Res., 1962, 53, p 736–737. https://doi.org/10.1515/ijmr-1962-531108

    Article  Google Scholar 

  36. R.D. Reiswig, and K.A. Gschneidner, Melting Points of LaRu2, CeRu2, and PrRu2, J. Less Common Metals, 1963, 5, p 432–433.

    Article  Google Scholar 

  37. A. Palenzona, The Phase Diagram of the Ce-Ru System, J. Alloys Compd., 1991, 176, p 241–246. https://doi.org/10.1016/0925-8388(91)90031-P

    Article  Google Scholar 

  38. A. Palenzona, and F. Canepa, The Phase Diagrams of the La-Ru and Nd-Ru Systems, J. Less-Common Metals, 1990, 157, p 307–313. https://doi.org/10.1016/0022-5088(90)90186-N

    Article  Google Scholar 

  39. B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt-Börnstein—Group IV Physical Chemistry, Vol. 5. Springer, Germany, 1991.

    Google Scholar 

  40. H. Okamoto, Ce-Ru (Cerium-Ruthenium), J. Phase Equilibria, 1992, 13, p 437–438. https://doi.org/10.1007/978-3-540-44756-6_147

    Article  Google Scholar 

  41. T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, and W.W. Scott, Binary Alloy Phase Diagrams, 2nd edn. ASM International, Materials Park, 1990.

    Google Scholar 

  42. W. Moffatt, The Handbook of Binary Phase Diagrams. General Electric, Schenectady, 1978.

    Google Scholar 

  43. A.L. Shilov, E.I. Yaropolava, M.V. Raevskaya, and M.E. Kost, Hydrides of Samarium-Ruthenium Intermetallides, Russ. J. Lnorg. Chem., 1978, 23, p 3370–3373.

    Google Scholar 

  44. A. Palenzona, The Crystal Structure of the Rare Earth Rich Ruthenium Compounds R3ru and R5Ru2, J. Less-Common Metals, 1979, 66, p P27–P33. https://doi.org/10.1016/0022-5088(79)90234-0

    Article  Google Scholar 

  45. P. Sharifrazi, R.C. Mohanty, and A. Raman, Intermediate Phases in Some Rare Earth Metal-Ruthenium Systems, Z. Metallkd., 1984, 75, p 801–805. https://doi.org/10.1515/ijmr-1984-751011

    Article  Google Scholar 

  46. O. Loebich Jr., and E. Raub, Die Legierungen des Rutheniums mit Gadolinium und Dysprosium und ihre magnetischen Eigenschaften, J. Less-Common Met., 1976, 46, p 7–15. https://doi.org/10.1016/0022-5088(76)90172-7

    Article  Google Scholar 

  47. A. Palenzona, and F. Canepa, The Phase Diagram of the Sm-Ru System, J. Less-Common Metals, 1989, 155, p L31–L33. https://doi.org/10.1016/0022-5088(89)90246-4

    Article  Google Scholar 

  48. H. Okamoto, Ru-Sm (Ruthenium-Samarium), J. Phase Equilibria Diffus., 1991, 12, p 253–254. https://doi.org/10.1007/BF02645731

    Article  Google Scholar 

  49. A.E. Dwight, Factors Controlling the Occurrence of Laves Phases and AB5 Compounds Among Transition Elements, Trans. ASM, 1961, 53, p 479–500.

    Google Scholar 

  50. H. Hall, J.F. Cannon, and D.L. Robertson, The Effect of High Pressure on the Formation of LRu2 and LOs2 (L=Lanthanide) Compounds, J. Less Common Metals, 1972, 29, p 140–146. https://doi.org/10.1016/0022-5088(72)90184-1

    Article  Google Scholar 

  51. N. Selhaoui, and O.J. Kleppa, Standard Enthalpies of Formation of Cerium Alloys, Ce + Me (Me= Ru, Rh, Pd, Ir, Pt) and of Lutetium Alloys, Lu+ Me (Me= Rh, Pd, Ir, Pt) by Hightemperature Calorimetry, Int. J. Mater. Res., 1993, 84, p 744–747. https://doi.org/10.1515/ijmr-1993-841103

    Article  Google Scholar 

  52. A. Dębski, R. Dębski, and W. Gąsior, New Features of Entall Database: Comparison of Experimental and Model Formation Enthalpies, Arch. Metall. Mater., 2014, 59, p 1337–1343. https://doi.org/10.2478/amm-2014-0228

    Article  Google Scholar 

  53. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals. Transition Metal Alloys. North-Holland, Amsterdam, 1988.

    Google Scholar 

  54. W. Kohn, and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects*, Phys. Rev., 1965, 140, p A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  ADS  Google Scholar 

  55. P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  ADS  Google Scholar 

  56. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Matter., 2009. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  57. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  58. C. Colinet, Ab-Initio Calculation of Enthalpies of Formation of Intermetallic Compounds and Enthalpies of Mixing of Solid Solutions, Intermetallics, 2003, 11, p 1095–1102. https://doi.org/10.1016/S0966-9795(03)00147-X

    Article  Google Scholar 

  59. G. Ceder, K. Persson, The Materials Project: A Materials Genome Approach, DOE Data Explor. (2010)

  60. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, and C. Wolverton, The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies, npj Comput. Mater., 2015, 1, p 15010. https://doi.org/10.1038/npjcompumats.2015.10

    Article  ADS  Google Scholar 

  61. C. Oses, E. Gossett, D. Hicks, F. Rose, M.J. Mehl, E. Perim, I. Takeuchi, S. Sanvito, M. Scheffler, Y. Lederer, and O. Levy, Supporting Information: AFLOW-CHULL Manual AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis, J. Chem. Inf. Model., 2018, 58, p 2477–2490. https://doi.org/10.1021/acs.jcim.8b00393

    Article  Google Scholar 

  62. K. Choudhary, K.F. Garrity, A.C.E. Reid, B. Decost, A.J. Biacchi, A.R.H. Walker, Z. Trautt, J. Hattrick-simpers, A.G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, and S.V. Kalinin, The Joint Automated Repository for Various Integrated Simulations (JARVIS) for Data-Driven Materials Design, npj Comput. Mater., 2020, 6, p 173. https://doi.org/10.1038/s41524-020-00440-1

    Article  ADS  Google Scholar 

  63. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317–425. https://doi.org/10.1016/0364-5916(91)90030-N

    Article  Google Scholar 

  64. O. Kister, and A.T. Redlich, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345–348. https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  65. M. Hillert, and M. Jarl, A Model for Alloying Effects in Ferromagnetic Metals, Calphad, 1978, 2, p 227–238. https://doi.org/10.1016/0364-5916(78)90011-1

    Article  Google Scholar 

  66. G. Kaptay, The Exponential Excess Gibbs Energy Model Revisited, Calphad Comput. Coupling Phase Diagr. Thermochem., 2017, 56, p 169–184. https://doi.org/10.1016/j.calphad.2017.01.002

    Article  Google Scholar 

  67. Q. Guo, and O.J. Kleppa, Standard Enthalpies of Formation of Neodymium Alloys, Nd + Me ( Me - Ni, Ru, Rh, Pd, Ir, Pt ), by High-Temperature Direct Synthesis Calorimetry, Metall. Mater. Trans. B., 1995, 26B, p 275–279. https://doi.org/10.1007/BF02660969

    Article  ADS  Google Scholar 

  68. A.L. Shilov, L.N. Padurets, and M.E. Kost, Formation Enthalpy Determination for Intermetallic Compounds and Their Hydrides from Differential Thermal Analysis Data, Russ. J. Phys. Chem., 1983, 57, p 555–560.

    Google Scholar 

  69. R.F. Zhang, S.H. Sheng, and B.X. Liu, Predicting the Formation Enthalpies of Binary Intermetallic Compounds, Chem. Phys. Lett., 2007, 442, p 511–514. https://doi.org/10.1016/j.cplett.2007.06.031

    Article  ADS  Google Scholar 

  70. Q. Guo, and O.J. Kleppa, Standard Enthalpies of Formation of Dysprosium Alloys, Dy + Me (Me ≡ Ni, Ru, Rh, Pd, Ir, and Pt), by High-Temperature Direct Synthesis Calorimetry, Metall. Mater. Trans. B, 1996, 27, p 417–422. https://doi.org/10.1007/BF02914906

    Article  Google Scholar 

  71. N. Selhaoui, J. Charles, O.J. Kleppa, L. Bouirden, and J.C. Gachon, The Ruthenium-Yttrium System: An Experimental Calorimetric Study with a Phase Diagram Optimization, J. Solid State Chem., 1998, 138, p 302–306. https://doi.org/10.1006/jssc.1998.7795

    Article  ADS  Google Scholar 

  72. N. Selhaoui, and O.J. Kleppa, Standard Enthalpies of Formation of Lanthanum alloys, La + Me (Me=Ru, Rh, Pd, Os, Ir, Pt), by High-Temperature Calorimetry, J. Alloys Compd., 1993, 191, p 155–158. https://doi.org/10.1016/0925-8388(93)90289-Y

    Article  Google Scholar 

  73. G.F. Voronin, Thermodynamic Properties of Intermediate Phases with Narrow Regions of Homogeneity, J. Russ. J. Phys. Chem., 1976, 50, p 607–611.

    Google Scholar 

  74. J.H. Zhu, C.T. Liu, L.M. Pike, and P.K. Liaw, Enthalpies of Formation of Binary Laves Phases, Intermetallics, 2002, 10, p 579–595. https://doi.org/10.1016/S0966-9795(02)00030-4

    Article  Google Scholar 

  75. N. Selhaoui, J. Charles, L. Bouirden, and J.C. Gachon, Optimization of La-Ru System, Ann. Chim. Sci. Des. Mater., 1999, 24, p 97–104.

    Article  Google Scholar 

  76. S. Kardellass, V.P. Vassiliev, K. Mahdouk, N. Laaroussi, and N. Selhaoui, Excess Thermodynamic Properties of Solutions in Ln-Ru (Ln = Nd, Gd, Dy) Binary Systems Based on Quadratic, Exponential and Combined Models Supported by Ab-Initio Calculations, J. Phase Equilibria Diffus., 2023. https://doi.org/10.1007/s11669-022-01023-x

    Article  Google Scholar 

  77. A. Takeuchi, and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18, p 1779–1789. https://doi.org/10.1016/j.intermet.2010.06.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kardellass.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardellass, S., Corvalan-Moya, C. & Vassiliev, V.P. Thermodynamic Modeling of the (Ce and Sm)-Ru Binary Systems Based on Linear, Exponential, and Combined Models Aided by Ab-Initio Calculations. J. Phase Equilib. Diffus. 44, 300–323 (2023). https://doi.org/10.1007/s11669-023-01043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-023-01043-1

Keywords

Navigation