Skip to main content
Log in

Pseudo-structural Transition and Thermal Stress-Induced Microcracking in the NdCu Intermetallic

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this paper, the phase transition, thermal expansion, thermal properties, and the internal microcracks of the NdCu phase are studied in detail. The research shows that the NdCu is stabilized by thermal vibrational entropy with a FeB-type crystal structure, the crystallographic symmetry remains the same from room temperature to 973 K, and only the unit cell constants deviate from the law of linear change near 780 K. Such deviation of the lattice constants is different from the traditional viewpoints of structural phase transition. It is not driven by thermodynamics but by the anisotropic expansion of lattice along different crystallographic axes, resulting in anisotropic stress in different directions. The stresses are eventually released in the form of internal microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Sepehri-Amin, T. Ohkubo, T. Shima, and K. Hono, Grain Boundary and Interface Chemistry of an Nd-Fe-B-Based Sintered Magnet, Acta Mater., 2012, 60(3), p 819.

    Article  ADS  Google Scholar 

  2. Y. Tatetsu, S. Tsuneyuki, and Y. Gohda, First-Principles Study of the Role of Cu in Improving the Coercivity of Nd-Fe-B Permanent Magnets, Phys. Rev. Appl., 2016, 6(6), p 064029.

    Article  ADS  Google Scholar 

  3. Y.Q. Yang, H.G. Si, H. Yang, L. Zhang, D.F. Huang, B.Y. Chen, F. Xu, Y.M. Hu, and B.J. Han, Re-exchange of Fe and Cu at the Interface in Sintered Nd–Fe–B Magnets: A Method to Eliminate Fe Precipitation at Grain Boundaries, Phys. Lett. A, 2018, 382, p 135–138.

    Article  ADS  Google Scholar 

  4. G. Schneider, E.T. Henig, G. Petzow, and F.P. Missell, Microstructure of Sintered Fe-Nd-B Magnets, Zeitschrift Fur Metallkunde, 1990, 81, p 322–329.

    Google Scholar 

  5. T.-H. Kim, S.-R. Lee, M.-W. Lee, T.-S. Jang, J.W. Kim, Y.D. Kim, and H.-J. Kim, Dependence of Magnetic Phase-Transformation and Microstructural Characteristics on the Cu Content of Nd-Fe-B Sintered Magnet, Acta Mater., 2014, 6, p 12–21.

    Article  ADS  Google Scholar 

  6. T.-H. Kim, S.-R. Lee, J.W. Kim, Y.D. Kim, H.-J. Kim, M.-W. Lee, and T.-S. Jang, Optimization of the Post-Sintering Annealing Condition for the High Cu Content Nd-Fe-B Sintered Magnet, J. Appl. Phys., 2014, 15, p 17A770(1–3).

    Google Scholar 

  7. R.E. Walline, and W.E. Wallace, Magnetic and Structural Characteristics of Lanthanide-Copper Compounds, J. Chem. Phys., 1965, 42, p 604.

    Article  ADS  Google Scholar 

  8. M.M. Carnasciali, G.A. Cost, and E.A. Franceschi, Phase Equilibria in the Nd-Cu System, J. Less-mmon Met., 1983, 92, p 97–103.

    Article  Google Scholar 

  9. P. Wang, L. Zhou, Y. Dua, H. Xua, S. Liu, Li. Chen, and Y. Ouyang, Thermodynamic Optimization of the Cu–Nd System, J. Alloys Compd., 2011, 509, p 2679–2683.

    Article  Google Scholar 

  10. J. Zheng, and L. Nong, Phase Diagram of Nd-Cu Binary System alloys, Acta Physica Sinica, 1983, 32, p 1449–1454.

    Article  Google Scholar 

  11. J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Physica B, 1993, 192, p 55–69.

    Article  ADS  Google Scholar 

  12. The Elk Code, http://elk.sourceforge.net/.

  13. T. Mohri, T. Morita, N. Kiyokane, and H. Ishii, Theoretical Investigation of Lattice Thermal Vibration Effects on Phase Equilibria Within Cluster Variation Method, J. Phase Equilib. Diffus., 2009, 30, p 553–558.

    Article  Google Scholar 

  14. A. Togo, and I. Tanaka, First Principles Phonon Calculations in Materials Science, Scripta Mater., 2015, 108, p 1–5.

    Article  ADS  Google Scholar 

  15. John P Perdew, J A Chevary, S H Vosko, Koblar A Jackson, Mark R Pederson, D. J. Singh, and Carlos Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Physical Review B, 6 (1992) 6671–6687.

  16. C. Kittel, Introduction to Solid State Physics, 5th edn. Wiley, New York, 1976.

    MATH  Google Scholar 

  17. K. Huang, Solid State Physics, Chinese Ed. Higher Education Press (1998).

  18. V. Srikanth, E.C. Subbarao, and G.V. Rao, Thermal Expansion Anisotropy, Microcracking and Acoustic Emission of Nb2O5 Ceramics, Ceram. Int., 1992, 18, p 251–261.

    Article  Google Scholar 

  19. X. Tao, X. Liu, and Y. Cheng, Enhanced negative Thermal Expansion by Solid Solution of HfMgMo15W15O12, Mater. Express, 2016, 6, p 515–520.

    Article  Google Scholar 

  20. D.Y. Yang, K. Zhu, J. Wu, G.H. Wei, and J.W. Liu, Thermal Expansion Anisotropy of Cordierite Crystal, Adv. Mater. Res., 2011, 287–290, p 201–204.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51861010), the Talent introduction project of the Sichuan University of Science & Engineering (No.2020RC14), and the Open Fund of Material Corrosion and Protection Sichuan Key Laboratory (No.20220CL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuQi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yan, P. & Yang, Y. Pseudo-structural Transition and Thermal Stress-Induced Microcracking in the NdCu Intermetallic. J. Phase Equilib. Diffus. 44, 17–27 (2023). https://doi.org/10.1007/s11669-022-01020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-01020-0

Keywords

Navigation