Skip to main content
Log in

Specific Features of the Atomic Structure of Ti50Ni25Cu25 Alloy Rapidly Quenched from Melt

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A complex study of the structure of Ti50Ni25Cu25 alloy obtained in the initial amorphous state by rapid quenching (melt spinning) have been performed for the first time. The investigations are carried out by methods of neutron diffraction, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and electron microdiffraction. It is found that the topological and composition short-range atomic order, corresponding to three superstructure types (B2, L21, and L12), is formed within localized nanodomains (up to 1 nm) in amorphous Ti50Ni25Cu25 alloy upon solidification. It is also demonstrated for the first time that the alloy has an amorphous–crystal structure, which contains (along with individual microspherulites that underwent thermoelastic martensitic transformation B2 ↔ B19) nanocrystalline ensembles with the B2, L21, or L12 structure up to 10 nm in size, which are localized in the amorphous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rapidly Quenched Metals, Ed. by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985).

    Google Scholar 

  2. I. B. Kekalo, Atomic Structure of Amorphous Alloys and Its Evolution (Ucheba MISIS, Moscow, 2006) [in Russian].

    Google Scholar 

  3. A. M. Glezer and I. E. Permyakova, Nanocrystals Quenched from Melt (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  4. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, Fiz. Met. Metalloved. 83 (3), 68 (1997).

    Google Scholar 

  5. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, Fiz. Met. Metalloved. 83 (3), 78 (1997).

    Google Scholar 

  6. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, Fiz. Met. Metalloved. 83 (4), 155 (1997).

    Google Scholar 

  7. V. G. Pushin, S. B. Volkova, N. M. Matveeva, et al., Fiz. Met. Metalloved. 83 (6), 149 (1997).

    Google Scholar 

  8. V. G. Pushin, S. B. Volkova, N. M. Matveeva, et al., Fiz. Met. Metalloved. 83 (6), 157 (1997).

    Google Scholar 

  9. V. G. Pushin, S. B. Volkova, N. M. Matveeva, et al., Fiz. Met. Metalloved. 84 (4), 172 (1997).

    Google Scholar 

  10. N. M. Matveeva, V. G. Pushin, A. V. Shelyakov, et al., Fiz. Met. Metalloved. 83 (6), 82 (1997).

    Google Scholar 

  11. E. Cesari, J. Van Humbeek, V. Kolomytsev, et al., J. Phys. IV. France 5, 197 (1997).

  12. A. V. Pushin, N. I. Kourov, A. A. Popov, and V. G. Pushin, Materialovedenie 187 (10), 24 (2012).

    Google Scholar 

  13. A. V. Pushin, A. A. Popov, and V. G. Pushin, Fiz. Met. Metalloved. 113 (3), 299 (2012).

    Google Scholar 

  14. A. V. Pushin, A. A. Popov, and V. G. Pushin, Fiz. Met. Metalloved. 114 (6), 753 (2013).

    Google Scholar 

  15. A. V. Pushin, A. A. Popov, and V. G. Pushin, Mater. Sci. Forum 738–739, 321 (2013).

    Article  Google Scholar 

  16. A. V. Shelykov, S. G. Larin, V. P. Ivanov, et al., J. Phys. IV, France 11, 547 (2001).

    Google Scholar 

  17. S. F. Dubinin, V. D. Parkhomenko, V. G. Pushin, and S. G. Teploukhov, Fiz. Met. Metalloved. 89 (1), 70 (2000).

    Google Scholar 

  18. V. D. Parkhomenko, S. F. Dubinin, V. G. Pushin, and S. G. Teploukhov, Vopr. At. Nauki Tekh., No. 4, 28 (2001).

  19. B. A. Aleksashin, V. V. Kondrat’ev, A. V. Korolev, et al., Fiz. Met. Metalloved. 110 (6), 608 (2010).

    Google Scholar 

  20. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, et al., Ann. Chim. Sci. Mat. 27 (3), 77 (2002).

    Article  Google Scholar 

  21. V. G. Pushin, N. I. Kourov, T. E. Kuntsevich, et al., Phys. Met. Metallogr. 94 (Suppl. 1), S107 (2002).

    Google Scholar 

  22. Heusler Alloys: Properties, Growth, Applications, Ed. by C. Felser (Springer International Publishing, 2016).

    Google Scholar 

  23. N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, et al., Tech. Phys. 62 (8), 1189 (2017).

    Article  Google Scholar 

  24. A. V. Pushin, V. G. Pushin, T. E. Kuntsevich, et al., Tech. Phys. 62 (12), 1843 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron microscopy studies were performed using equipment of the Collaborative Access Center of the Institute of Metal Physics (Ural Branch, Russian Academy of Sciences).

Funding

This study was performed within government contract no. AAAA-A18-118020190116-6 (“Structure”) and the Joint Laboratory of the Ural State University and the Mikheev Institute of Metal Physics (Ural Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, V.G., Pushin, A.V. & Kuranova, N.N. Specific Features of the Atomic Structure of Ti50Ni25Cu25 Alloy Rapidly Quenched from Melt. Crystallogr. Rep. 65, 12–17 (2020). https://doi.org/10.1134/S1063774519060154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519060154

Navigation