Skip to main content
Log in

Development of a Diffusion Mobility Database for Co-Based Superalloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

To facilitate the development of high-temperature Co-based γ-γ′ superalloys, a Co-Ni based diffusion mobility database is developed for the eight component FCC (Face Centered Cubic) system of Co-Al-W-Ni-Cr-Ti-Ta-Re. A CALPHAD approach is used to represent the temperature and composition dependency of the multicomponent system. The mobility descriptions were based on previous assessment work for the Ni-based superalloys, published experimental and computational data, and established diffusion correlations. The initial mobility descriptions were then refined using additional diffusion couple experimental data, particularly for the Co-Cr, Co-Ta, and Ni-Ta systems. After re-optimizing the descriptions with the new experimental data, the mobility descriptions were validated using a collection of published diffusion couple composition profiles, which were not included in the initial assessment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Note all compositions are given in mole fraction unless otherwise stated.

  2. Commercial names for instruments and software are used for completeness and do not constitute an endorsement from NIST.

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 2006, 312, p 90–91. https://doi.org/10.1126/science.1121738

    Article  ADS  Google Scholar 

  2. T. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, New Co-based γ-γ′ High-Temperature Alloys, JOM, 2010, 62(1), p 58–63. https://doi.org/10.1007/s11837-010-0013-y

    Article  ADS  Google Scholar 

  3. E.A. Lass, Application of Computational Thermodynamics to the Design of a Co-Ni-Based g’-Strengthened Superalloy, Metall. Mater. Trans. A., 2017, 48A(5), p 2443–2459. https://doi.org/10.1007/s11661-017-4040-y

    Article  ADS  Google Scholar 

  4. J. Ruan, W. Xu, T. Yang, J. Yu, S. Yang, J. Luan, T. Omori, C. Wang, R. Kainuma, K. Ishida, C.T. Liu, and X. Liu, Accelerated Design of Novel W-free High-Strength Co-base Superalloys with Extremely wide γ/γ’ Region by Machine Learning and CALPHAD Methods, Acta Mater., 2020, 186, p 425–433. https://doi.org/10.1016/j.actamat.2020.01.004

    Article  ADS  Google Scholar 

  5. P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Q. Feng, T. Omori, and Y. Su, Machine Learning Assisted Design of γ′-Strengthened Co-base Superalloys with Multi-Performance Optimization, Comput. Mater., 2020. https://doi.org/10.1038/s41524-020-0334-5

    Article  Google Scholar 

  6. S.S. Naghavi, V.I. Hegde, A. Saboo, and C. Wolverton, Energetics of Cobalt Alloys and Compounds and Solute–Vacancy Binding in fcc Cobalt: A First-Principles Database, Acta Mater., 2017, 124, p 1–8. https://doi.org/10.1016/j.actamat.2016.10.065

    Article  ADS  Google Scholar 

  7. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken, Diffusion of Solutes in fcc Cobalt Investigated by Diffusion Couples and First Principles Kinetic Monte Carlo, Acta Mater., 2016, 106, p 304–312. https://doi.org/10.1016/j.actamat.2016.01.028

    Article  ADS  Google Scholar 

  8. Center for Hierarchical Materials Design, Northwestern University, Evanston, IL 2022. https://chimad.northwestern.edu.

  9. U.R. Kattner, Construction of a Thermodynamic Database for Ni-base Superalloys: A Case Study, in TMS. P.E.A. Turchi, A. Gonis, and R.D. Shull, Eds., Warrendale, PA, 2002, p 147–164

    Google Scholar 

  10. P. Wang, W. Xiong, U.R. Kattner, C.E. Campbell, E.A. Lass, O.Y. Kontsevoi, and G.B. Olson, Thermodynamic Re-assessment of the Al-Co-W System, Calphad, 2017, 59, p 112–130. https://doi.org/10.1016/j.calphad.2017.09.007

    Article  Google Scholar 

  11. P. Wang, M.C. Peters, U.R. Kattner, K. Choudhary, and G.B. Olson, Thermodynamic Analysis of the Topologically close Packed Sigma Phase in the Co-Cr System, Intermetallics, 2019, 105, p 13–20. https://doi.org/10.1016/j.intermet.2018.11.004

    Article  Google Scholar 

  12. P. Wang, O.Y. Kontsevoi, and G.B. Olson, Thermodynamic Analysis of the Co-W System, J. Mater. Sci., 2019, 54, p 10261–10269. https://doi.org/10.1007/s10853-019-03616-3

    Article  ADS  Google Scholar 

  13. P. Wang, T. Hammerschmidt, U.R. Kattner, and G.B. Olson, Structural Stability of Co-V Intermetallic Phases and Thermodynamic Description of the Co-V System, Calphad, 2020, 68, p 7. https://doi.org/10.1016/j.calphad.2019.101729

    Article  Google Scholar 

  14. P. Wang, J. Koßmann, U.R. Kattner, M. Palumbo, T. Hammerschmidt, and G.B. Olson, Thermodynamic Assessment of the Co-Ta System, Calphad, 2019, 64, p 205–212. https://doi.org/10.1016/j.calphad.2018.12.002

    Article  Google Scholar 

  15. C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-base Superalloys, Acta Mater., 2002, 50(4), p 775–792.

    Article  ADS  Google Scholar 

  16. C.E. Campbell, NIST Ni-Based Diffusion Mobility Database, Materialsdata.nist.gov, 2008. http://hdl.handle.net/11256/942.

  17. J. Ågren, Numerical Treatment of Diffusional Reactions in Multicomponent Alloys, J. Phys. Chem. Solid, 1982, 43(4), p 385–391.

    Article  ADS  Google Scholar 

  18. J. Ågren, Diffusion in Phases with Several Components and Sublattices, J. Phys. Chem. Solid, 1982, 43(5), p 421–430.

    Article  ADS  Google Scholar 

  19. F. Liu, Z. Wang, Z. Wang, J. Zhong, X. Wu, Z. Qun, Z. Li, L. Tan, L. Zhao, L. Zhu, L. Jiang, L. Huang, L. Zhang, and Y. Liu, High-Throughput Determination of Interdiffusivity Matrices in Ni-Al-Ti-Cr-Co-Mo-Ta-W Multicomponent Superalloys and their Application in Optimization of Creep Resistance, Mater. Today Commun., 2020, 24, p 11. https://doi.org/10.1016/j.mtcomm.2020.101018

    Article  Google Scholar 

  20. S.S. Naghavi, V.I. Hegde, and C. Wolverton, Diffusion Coefficients of Transition Metals in fcc Cobalt, Acta Mater., 2017, 132, p 467–478. https://doi.org/10.1016/j.actamat.2017.04.060

    Article  ADS  Google Scholar 

  21. J. Askill, Tracer Diffusion Data for Metals Alloys and Simple Oxides. Plenum, New York, 1970.

    Book  Google Scholar 

  22. A.D. Le Claire, On the Theory of Impurity Diffusion in Metals, Philos. Mag., 1962, 7(73), p 141–167. https://doi.org/10.1080/14786436208201866

    Article  ADS  Google Scholar 

  23. A.M. Brown, and M.F. Ashby, Correlations for Diffusion Constants, Acta Metall., 1980, 28, p 1085–1101.

    Article  Google Scholar 

  24. J. Cahoon and O.D. Sherby, The Activation Energy for Lattice Self-Diffusion and the EngeI-Brewer Theory, Metall. Trans. A, 1992, 23A(9), p 2491–2500.

    Article  ADS  Google Scholar 

  25. J. Xin, Y. Du, and S.-L. Shang, A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases, Metall. Mater. Trans., 2016, 47A(7), p 3295–3299.

    Article  Google Scholar 

  26. G. Erdélyi, D.L. Beke, F.J. Kedves, and I. Gödény, Determination of Diffusion Coefficients of Zn, Co qnd Ni in Aluminium by a Resistometric Method, Philos. Mag. B, 1978, 38(5), p 445–462. https://doi.org/10.1080/13642817808246394

    Article  ADS  Google Scholar 

  27. K.-I. Hirano, R.P. Agarwala, and M. Cohen, Diffusion of Iron, Nickel and Cobalt in Aluminum, Acta Metall., 1962, 10(9), p 857–863.

    Article  Google Scholar 

  28. A. Davin, V. Leroy, D. Coutsouradis, and L. Habraken, Comparison of the Diffusion of Some Substitution Elements in Nickel and Cobalt, Cobalt, 1963, 19(6), p 51–56.

    Google Scholar 

  29. J.W. Weeton, Diffusion of Chromium In Alpha Cobalt-Chromium Solid Solutions National Advisory Committee For Aeronautics, Washington DC, 1951, p 22

    Google Scholar 

  30. V.D. Divya, U. Ramamurty, and A. Paul, Diffusion in Co-Ni System Studied by Multifoil Technique, Def. Diff. For., 2011, 312–315, p 466–471. https://doi.org/10.4028/www.scientific.net/DDF.312-315.466

    Article  Google Scholar 

  31. Y.W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma, and K. Ishida, Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries, J. Phase Equilib. Diffus., 2008, 29(1), p 2–10. https://doi.org/10.1007/s11669-007-9238-z

    Article  Google Scholar 

  32. K.-I. Hirano, R.P. Agarwala, B.L. Averbach, and M. Cohen, Diffusion in Cobalt-Nickel Alloys, J. Appl. Phys., 1962, 33(10), p 3049–3054.

    Article  ADS  Google Scholar 

  33. H. Liu, Y. Liu, Y. Du, Q. Min, J. Zhang, and S. Liu, Atomic Mobilities and Diffusivities in fcc Co-X (X=Mn, Pt and Re) Alloys, Calphad, 2019, 64, p 306–312. https://doi.org/10.1016/j.calphad.2019.01.003

    Article  Google Scholar 

  34. P.J.M. van der Straten, G.F. Bastin, F.J.J. van Loo, and G.D. Rieck, Phase Equilibria and Interdiffusion in the Cobalt-Titanium System, Int. J. Mater. Res., 1975, 67, p 152–157.

  35. Y.W. Cui, G. Xu, R. Kato, X.-G. Lu, R. Kainuma, and K. Ishida, Interdiffusion and Atomic Mobility for FCC-Centered Cubic (FCC) Co-W Alloys, Metall. Mater. Trans. A, 2013. https://doi.org/10.1007/s11661-012-1586-6

    Article  Google Scholar 

  36. S.M. Klotsman, S.V. Osetrov, and A.N. Timofeev, Volume Diffusion of Cobalt in Tungsten Single Crystal, Phys. Rev. B, 1997, 46(5), p 2831–2837.

    Article  ADS  Google Scholar 

  37. J. Chen, J. Zhao, L. Zhang, X.-G. Lu, and L. Liu, Atomic Mobilities in fcc Ni-rich Ni-X (X=Rh, Ta, W, Re, and Ir) Systems, Calphad, 2019, 65, p 316–325. https://doi.org/10.1016/j.calphad.2019.03.013

    Article  Google Scholar 

  38. M.S.A. Karunaratne, P. Carter, and R.C. Reed, Interdiffusion in the fcc-Centred Cubic Phase of the Ni-Re, Ni-Ta, and Ni-W Systems between 900 and 1300 °C, Mater. Sci. Eng. A, 2000, 281, p 229–233.

    Article  Google Scholar 

  39. W.J. Boettinger, M.E. Williams, K.W. Moon, G.B. McFadden, P.N. Patrone, and J.H. Perepezko, Interdiffusion in the Ni-Re System: Evaluation of Uncertainties, J. Phase Equilib. Diffus., 2017, 38(5), p 750–763. https://doi.org/10.1007/s11669-017-0562-7

    Article  Google Scholar 

  40. M. Liu, L. Zhang, W. Chen, J. Xin, Y. Du, and H. Xu, Diffusivities and Atomic Mobilities in fcc_A1 Ni-X (X=Ge, Ti and V) Alloys, Calphad, 2013, 41, p 108–118. https://doi.org/10.1016/j.calphad.2013.02.005

    Article  Google Scholar 

  41. G.W. Roper and D.P. Whittle, Interdiffusion in Ternary Co-Cr-Al, Metal Sci., 1980, 1, p 21–28.

    Article  Google Scholar 

  42. Y. Wang, N. Zhu, H. Wang, and X.-G. Lu, Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys, Metall. Mater. Trans. A, 2017, 48A, p 943–947. https://doi.org/10.1007/s11661-016-3908-6

    Article  ADS  Google Scholar 

  43. L. Zhu, C. Wei, H. Qi, L. Jiang, Z. Jin, and J.-C. Zhao, Experimental Investigation of Phase Equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) Ternary Systems using Diffusion Multiples, J. Alloy Compd., 2017, 691, p 110–118. https://doi.org/10.1016/j.jallcom.2016.08.210

    Article  Google Scholar 

  44. Y. Chen, J. Li, B. Tang, G. Xu, H. Kou, and Y. Cui, Interdiffusion in FCC Co-Al-Ti Ternary Alloys, J Phase Equil and Diffus., 2015, 36, p 127–135. https://doi.org/10.1007/s11669-015-0367-5

    Article  Google Scholar 

  45. K.-W. Moon, C.E. Campbell, M.E. Williams, and W.J. Boettinger, Diffusion in FCC Co-rich Co-Al-W Alloys at 900 and 1000 °C, J. Phase Equilib. Diffus., 2016, 37(4), p 402–415. https://doi.org/10.1007/s11669-016-0486-7

    Article  Google Scholar 

  46. H. Chang, G. Xu, X.-G. Lu, L. Zhou, K. Ishida, and Y. Cui, Experimental and Phenomenological Investigations of Diffusion in Co-Al-W Alloys, Scripta Mater., 2015, 106, p 13–16. https://doi.org/10.1016/j.scriptamat.2015.03.021

    Article  Google Scholar 

  47. S. Obata, M. Moniruzzaman, and Y. Murata, Interdiffusion in Co-Based Co-Al-W Ternary Alloys at Elevated Temperatures, ISIJ Int., 2014, 54(10), p 2129–2133. https://doi.org/10.2355/isijinternational.54.2129

    Article  Google Scholar 

  48. J. Chen, J. Xiao, Z. Lu, C. Wang, and L. Zhang, Atomic Mobilities and Interdiffusivities in Ni-rich fcc Ni-Co-Cr and Ni-Al-Co-Cr Systems Evaluated using Composition Profiles and HitDIC, J. Alloy Compd., 2021, 865, p 158645. https://doi.org/10.1016/j.jallcom.2021.158645

    Article  Google Scholar 

  49. J. Chen, Y. Liu, G. Sheng, F. Lei, and Z. Kang, Atomic Mobilities, Interdiffusivities and their Related Diffusional Behaviors in fcc Co-Cr-Ni Alloys, J. Alloy Compd., 2015, 621, p 428–433. https://doi.org/10.1016/j.jallcom.2014.09.139

    Article  Google Scholar 

  50. Z. Zhou, and Y. Liu, Atomic Mobilities and Diffusivities in fcc Co-Cr-Ti Alloys, J. Phase Equil. Diffus., 2016, 37, p 155–161. https://doi.org/10.1007/s11669-015-0437-8

    Article  Google Scholar 

  51. W. Zhang, D. Liu, L. Zhang, Y. Du, and B.-Y. Huang, Experimental Investigation and Computational Study of Atomic Mobility in fcc Ternary Co-Cr-W Alloys, Calphad, 2014, 45, p 118–126. https://doi.org/10.1016/j.calphad.2013.11.005

    Article  Google Scholar 

  52. J. Huang, Y. Wang, J. Wang, X.-G. Lu, and L. Zhang, Thermodynamic Assessments of the Ni-Cr-Ti System and Atomic Mobility of Its fcc Phase, J. Phase Equilib. Diffus., 2018, 39, p 597–609. https://doi.org/10.1007/s11669-018-0650-3

    Article  Google Scholar 

  53. E. Mabruri, S. Sakurai, Y. Murata, T. Koyama, and M. Morinaga, Interdiffusion in Ni-Co-Re and Ni-Co-Ru Systems, Mater. Trans., 2007, 48(10), p 2718–2723. https://doi.org/10.2320/matertrans.MRA2007116

    Article  Google Scholar 

  54. X.J. Liu, J.Y. Lin, Y. Lu, Y.H. Guo, and C.P. Wang, Assessment o the Atomic Mobility for the fcc Phase of Ni-Co-X (X- Re and Ru) System, Calphad, 2014, 45, p 138–144. https://doi.org/10.1016/j.calphad.2013.12.003

    Article  Google Scholar 

  55. V.D. Divya, U. Ramamurty, and A. Paul, Interdiffusion and Growth of the Phases in CoNi/Mo and CoNi/W Systems, Metall. Mater. Trans., 2012. https://doi.org/10.1007/s11661-011-0990-7

    Article  Google Scholar 

  56. Y. Minamino, Y. Koizumi, N. Tsuji, T. Yamada, and T. Takahashi, Interdiffusion in Co Solid Solutions of Co-Al-Cr-Ni System at 1423 K, Mater. Trans., 2003, 44(1), p 63–71. https://doi.org/10.2320/matertrans.44.63

    Article  Google Scholar 

  57. T. Gómez-Acebo, B. Navarcorena, and F. Castro, Interdiffusion in Multiphase, Al-Co-Cr-Ni-Ti Diffusion Couples, J. Phase Equilib. Diffus., 2004, 25(3), p 237–251.

    Article  Google Scholar 

  58. M. Walbrühl, A. Blomqvist, P.A. Korzhavyi, and C.M. Araujo, Surface Gradients in Cemented Carbides from First-Principles-Based Multiscale Modeling: Atomic Diffusion in Liquid Co, Int. J. Refract. Met. Hard Mater., 2017, 66, p 174–179. https://doi.org/10.1016/j.ijrmhm.2017.03.016

    Article  Google Scholar 

  59. B. Jonsson, Assessment of the Mobilities of Cr, Fe and Ni in Binary Fcc Cr-Fe and Cr-Ni Alloys, Scand. J. Metall., 1995, 24(1), p 21–27.

    Google Scholar 

  60. Y.W. Cui, K. Oikawa, R. Kainuma, and K. Ishida, Study of Diffusion Mobility of Al-Zn Solid Solution, J. Phase Equilib. Diffus., 2006, 27(4), p 333–342. https://doi.org/10.1361/154770306x116261

    Article  Google Scholar 

  61. A. Borgenstam, A. Engström, L. Höglund, and J. Ågren, DICTRA, a Tool for Simulation of Diffusion Transformations in Alloys, J. Phase Equil., 2000, 21(3), p 269–280.

    Article  Google Scholar 

  62. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc and DICTRA Computational tools for Materials Science, CALPHAD, 2002, 26, p 273–312.

    Article  Google Scholar 

  63. J. Zhong, L. Chen, and L. Zhang, Automation of Diffusion Database Development in Multicomponent Alloys from Large Number of Experimental Composition Profiles, NPJ Comput. Mater., 2021, 7(1), p 35. https://doi.org/10.1038/s41524-021-00500-0

    Article  ADS  Google Scholar 

  64. K. Abrahams, S. Zomorodpoosh, A.R. Khorasgani, I. Roslyakova, I. Steinbach, and J. Kundin, Automated Assessment of a Kinetic Database for fcc Co-Cr-Fe-Mn-Ni High Entropy Alloys, Model. Simul. Mater. Sci. Eng., 2021, 29(5), p 055007. https://doi.org/10.1088/1361-651x/abf62b

    Article  ADS  Google Scholar 

  65. DICTRA, Thermo-Calc AB, Stockholm, Sweden, 2003.

  66. TC-Python, Thermo-Calc Software AB, Stockholm, Sweden, 2021.

  67. A. Salmasi, S.J. Graham, I. Galbraith, A.D. Graves, M. Jackson, S. Norgren, D. Guan, H. Larsson, and L. Höglund, Mobilities of Ti and Fe in Disordered TiFe-BCC Assessed from New Experimental Data, Calphad, 2021, 74, p 102300. https://doi.org/10.1016/j.calphad.2021.102300

    Article  Google Scholar 

  68. C.E. Campbell and A.L. Rukhin, Evaluation of Self-Diffusion Data using Weighted Means Statistics, Acta Mater., 2011, 59(13), p 5194–5201. https://doi.org/10.1016/j.actamat.2011.04.055

    Article  ADS  Google Scholar 

  69. Y.W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma, and K. Ishida, Computational Study of Atomic Mobility in Co-Fe-Ni Ternary fcc Alloys, J. Phase Equilib. Diffus., 2008, 29(4), p 312–321. https://doi.org/10.1007/s11669-008-9341-9

    Article  Google Scholar 

  70. R.C. Ruder, and C.E. Birchenall, Cobalt Self-Diffusion: A Study of the Method of Decrease in Surface Activity, JOM, 1951, 3(2), p 142–146. https://doi.org/10.1007/BF03397290

    Article  Google Scholar 

  71. B. Million and J. Kucera, Concentration Dependence of Nickel Diffusion in Nickel-Cobalt Alloys, Czech. J. Phys. B, 1971, 21(2), p 161–171.

    Article  ADS  Google Scholar 

  72. W. Bussmann, C. Herzig, W. Rempp, K. Maier, and H. Mehrer, Isotope Effect and Self-Diffusion in Face-Centred Cubic Cobalt, Phys. Stat. Solid. A, 1979, 56, p 87–97.

    Article  ADS  Google Scholar 

  73. C.G. Lee, Y. Iijima, and K. Hirano, Self-Diffusion and Isotope Effect in Face-Centred Cubic Cobalt, Def. Diff. For., 1993, 95–98, p 723–728. https://doi.org/10.4028/www.scientific.net/DDF.95-98.723

    Article  Google Scholar 

  74. A.T. Dinsdale, Sgte Data for Pure Elements, Calphad, 1991, 15(4), p 317–425.

    Article  Google Scholar 

  75. S. Yang, Y. Wang, Z.-K. Liu, and Y. Zhong, Ab Initio Simulations on the Pure Cr Lattice Stability at 0K: Verification with the Fe-Cr and Ni-Cr Binary Systems, Calphad, 2021. https://doi.org/10.1016/j.calphad.2021.102359

    Article  Google Scholar 

  76. J. Chen, J. Xiao, Z. Lu, C. Wang, and L. Zhang, Atomic Mobilities and Interdiffusivities in Ni-Rich fcc Ni-Co-Cr and Ni-Al-Co-Cr Systems Evaluated using Composition Profiles and HitDIC, J. Alloy Compd., 2021. https://doi.org/10.1016/j.jallcom.2021.158645

    Article  Google Scholar 

  77. S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, and S. Saji, Interdiffusion and its Size Effect in Nickel Solid Soltions of Ni-Co, Ni-Cr and Ni-Ti Systems, J. Mater. Sci. Lett., 1992, 11, p 1333–1337.

    Article  Google Scholar 

  78. N. Komai, M. Watanage, Z. Hortia, T. Sano, and M. Nemoto, Analytical Electron Microscopy Study of Ni/Ni-8 Mol% Ti Diffusion Couples, Acta Mater., 1998, 40(12), p 4443–4451.

    Article  ADS  Google Scholar 

  79. M.S.A. Karunaratne, P. Carter, and R.C. Reed, On the Diffusion of Aluminium and Titanium in the Ni-rich Ni-Al-Ti System between 900 and 1200 Degrees C, Acta Mater., 2001, 49(5), p 861–875.

    Article  ADS  Google Scholar 

  80. Z. Zhou, Y. Liu, G. Sheng, F. Lei, and Z. Kang, A Contribution to the Ni-Based Mobility Database: Fcc Ni-Fe-Ti Ternary Alloy, Calphad, 2015, 48, p 151–156. https://doi.org/10.1016/j.calphad.2014.12.003

    Article  Google Scholar 

  81. J. Zhang, Y. Du, Y. Liu, W. Zhang, D. Liu, and C. Chen, Assessment of Atomic Mobilities for fcc Co-Ti-V Alloys, Calphad, 2018, 61, p 179–188. https://doi.org/10.1016/j.calphad.2018.04.002

    Article  Google Scholar 

  82. T. Angsten, T. Mayeshiba, H. Wu, and D. Morgan, Elemental Vacancy Diffusion Database from High-Throughput First-Principles Calculations for fcc and hcp Structures, New J. Phys., 2014, 16, p 015018. https://doi.org/10.1088/1367-2630/16/1/015018

    Article  ADS  Google Scholar 

  83. W.B. Zhang, D.D. Liu, L.J. Zhang, Y. Du, and B.Y. Huang, Experimental Investigation and Computational Study of Atomic Mobility in fcc Ternary Co-Cr-W Alloys, Calphad, 2014, 45, p 118–126.

    Article  Google Scholar 

Download references

Acknowledgments

WT acknowledges financial support from awards 70NANB14H012 and 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carelyn Campbell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of former JPED Editor-in-Chief John Morral. The special issue was organized by Prof. Yongho Sohn, University of Central Florida; Prof. Ji-Cheng Zhao, University of Maryland; Dr. Carelyn Campbell, National Institute of Standards and Technology; and Dr. Ursula Kattner, National Institute of Standards and Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindwall, G., Moon, KW., Williams, M. et al. Development of a Diffusion Mobility Database for Co-Based Superalloys. J. Phase Equilib. Diffus. 43, 931–952 (2022). https://doi.org/10.1007/s11669-022-01011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-01011-1

Keywords

Navigation