Skip to main content
Log in

Thermodynamic Assessment of the Ternary B-Hf-Zr System with Refined B-Hf Description

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic assessment of the ternary system B-Hf-Zr has been conducted by modeling the Gibbs energy of all individual phases using the CALPHAD (CALculation of PHAse Diagrams) approach. There is no ternary compound in this system. The individual solution phases, i.e., liquid, (βHf,βZr), HfB and (Hf,Zr)B2 have been modeled. The modeling covers the whole composition and temperature ranges. The Gibbs energies of HfB2 and HfB in the B-Hf system were reassessed using the two-sublattice models (B,Hf)1(B,Hf)2 and (Hf)1(B,Hf)1, respectively. A set of self-consistent thermodynamic parameters for the B-Hf-Zr system was obtained by considering the phase diagram data in the ternary system. Comprehensive comparisons between the calculated and measured phase diagram and thermodynamic data show that the experimental information was satisfactorily accounted for by the present thermodynamic description. The liquidus projection and reaction scheme of the B-Hf-Zr system are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. S. Bajpai, R. Kundu, and K. Balani, Effect of B4C Reinforcement on Microstructure, Residual Stress, Toughening and Scratch Resistance of (Hf,Zr)B2 Ceramics, Mater. Sci. Eng. A, 2020, 796(7), p 140022.

    Article  Google Scholar 

  2. F. Monteverde, F. Saraga, and M. Gaboardi, Compositional Disorder and Sintering of Entropy Stabilized (Hf,Nb,Ta,Ti,Zr)B2 Solid Solution Powders, J. Eur. Ceram. Soc., 2020, 40(12), p 3807–3814.

    Article  Google Scholar 

  3. J. Yin, B.H. Zhang, X.J. Liu, and Z.R. Huang, Pressurelessly Densified (Zr,Hf)B2-SiC Ceramics by Co-Doping Hafnium-Boron Carbides, J. Alloys Compd., 2017, 727(15), p 706–710.

    Article  Google Scholar 

  4. L. Silvestroni, and D. Sciti, Effects of MoSi2 Additions on the Properties of Hf– and Zr–B2 Composites Produced by Pressureless Sintering, Scripta Mater., 2007, 57, p 165–168.

    Article  Google Scholar 

  5. M. Brochu, B. Gauntt, T. Zimmerly, A. Ayala, and R. Loehman, Fabrication of UHTCs by Conversion of Dynamically Consolidated Zr+B and Hf+B Powder Mixtures, J. Am. Ceram. Soc., 2008, 91(9), p 2815–2822.

    Article  Google Scholar 

  6. Y.F. Pan, C. Zhang, J.X. Zhang, L. Huang, X.Y. Yang, Y. Du, and F.H. Luo, Thermodynamic Modeling of the B-Ti-Zr System over the Whole Composition and Temperature Ranges, J. Phase Equilib. Diffus., 2019, 40, p 364–374.

    Article  Google Scholar 

  7. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273–312.

    Article  Google Scholar 

  8. L. Zhang, I. Steinbach, and Y. Du, Phase-Field Simulation of Diffusion Couples in the Ni–Al System, Int. J. Mater. Res., 2011, 102(4), p 371–380.

    Article  Google Scholar 

  9. P. Rogl, and P.E. Potter, A Critical Review and Thermodynamic Calculation of the Binary System: Hafnium-Boron, Calphad, 1988, 12(3), p 207–218.

    Article  Google Scholar 

  10. E. Rudy and S. Windisch, Ternary Phase Equilibriums in Transition Metal-Boron-Carbon-Silicon Systems. Technical Report No. AFML-TR-65-2, Part I, Volume IX, 1965

  11. H. Bittermann, and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Ternary System Boron-Hafnium-Titanium (B-Hf-Ti), J. Phase Equilib., 1997, 18(1), p 24–47.

    Article  Google Scholar 

  12. V.T. Witusiewicz, A.A. Bondar, U. Hecht, O.A. Potazhevska, and T. Ya Velikanova, Thermodynamic Modelling of the Ternary B-Mo-Ti System with Refined B-Mo Description, J. Alloys Compd., 2016, 655, p 336–352.

    Article  Google Scholar 

  13. A.S. Bolgar, and A.V. Blinder, Thermodynamic Characteristics of Hafnium and Tantalum Diboride in A Wide Temperature Range, Sov. Powder Metall. Metal Ceram., 1989, 28, p 128–131.

    Article  Google Scholar 

  14. H.L. Schick, Thermodynamics of Certain Refractory Compounds. Academic Press, New York, 1966.

    Google Scholar 

  15. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. Wiley-VCH Verlag Gmbh, Weinheim, 1995.

    Book  Google Scholar 

  16. R. Loehman, E. Corral, H.P. Dumm, P. Kotula, and R. Tandon, Ultra High Temperature Ceramics for Hypersonic Vehicle Applications, SAND2006-2925, Albuquerque, 2006

  17. E.F. Westrum, and G. Feick, Heat Capacities of HfB2.035 and HfC0.968 from 5 to 350 K, J. Chem. Thermodyn., 1977, 9(3), p 293–299.

    Article  Google Scholar 

  18. R. Mezaki, E.W. Tilleux, D.W. Barnes, and J.L. Margrave, High-Temperature Thermodynamic Properties of Some Refractory Borides, Thermodyn. Nucl. Mater., IAEA Publications Proceeding Series, Vienna, 1962, pp 775–788

  19. C.D. Pears, S. Oglesby, and D.S. Nell, The Thermal Properties of Twenty-Six Solid Materials to 5000 °C or Their Destruction Temperatures, Tech. Report ASD-TDR-62-765, Wright-Patterson A.F.B.,OH, 1963

  20. Y. Pan, H.W. Huang, X. Wang, and Y.H. Lin, phase Stability and Mechanical Properties of Hafnium Borides: A First-Principles Study, Comput. Mater. Sci., 2015, 109, p 1–6.

    Article  Google Scholar 

  21. C.W. Xie, Q. Zhang, H.A. Zakaryan, H. Wan, N. Liu, A.G. Kvashnin, and A.R. Oganov, Stable and Hard Hafnium Borides: A First-Principles Study, J. Appl. Phys., 2019, 125(20), p 205109.

    Article  ADS  Google Scholar 

  22. L.A. Mcclaine, Thermodynamic and Kinetic Studies for a Refractory Material Program, Tech. Report No. ASD-TDR-62-204, Part III, Wright-Patterson A.F.B., OH, 1964

  23. E.P. Kitpichev, Y.I. Rubtsov, T.V. Sorokina, and V.K. Prokudina, Standard Enthalpies of Formation of Some Group IV-V Element Borides, J. Phys. Chem., 1979, 53(8), p 1128–1130.

    Google Scholar 

  24. V.M. Maslov, A.S. Neganov, I.P. Borovinskaya, and A.G. Merzhanov, Self-Propagating High-Temperature Synthesis as a Method of Determining Heats of Formation of Refractory Compounds, Fiz. Goreniya Vzryva, 1978, 14(6), p 73–82.

    Google Scholar 

  25. P.J. Spencer, O. Kubaschewski-von Goldbeck, R. Ferro, R. Marazza, K. Girgis, and O. Kubaschewski, Hafnium, Physico-Chemical Properties of its Compounds and Alloys, K.L. Komarek, Ed., Atomic Energy Review, Special Issue 8, IAEA, Vienna, 1981

  26. G.K. Johnson, E. Greenberg, J.L. Margrave, and W.N. Hubbard, Fluorine Bomb calorimetry, Enthalpies of Formation of the diborides of zirconium and hafnium, J. Chem. Eng. Data, 1967, 12(1), p 137–141.

    Article  Google Scholar 

  27. H.L. Schick, Thermodynamics of Certain Refractory Compounds, Academic Press, New York, 1966, 1, p 240-247

  28. F.W. Glaser, and B. Post, Trans. AIME, 1953, 197, p 1117–1118.

    Google Scholar 

  29. E. Rudy and S. Windisch, Ternary Phase Equilibriums in Transition Metal-Boron-Carbon-Silicon Systems. Technical Report No. AFML-TR-65-2, Part I, Volume VIII, 1966

  30. K.P. Portnoi, V.M. Romashov, and L.I. Vyroshina, Constitution Diagram of the System Zirconium-Boron, Poroshkov. Metall., 1970, 91, p 68–71.

    Google Scholar 

  31. K.I. Portnoi, and V.M. Romashov, Binary Constitution Diagrams of Systems Composed of Various Elements and Boron - A Review, Poroshkov. Metall., 1972, 5, p 48–56.

    Google Scholar 

  32. H. Nowotny, E. Rudy, and F. Benesovsky, Investigations in the Systems: Zirconium-Boron-Carbon and Zirconium-Boron-Nitrogen, Monatsh Chem., 1960, 91, p 963–974.

    Article  Google Scholar 

  33. O.I. Shulishova, and I.A. Shcherbak, Superconductivity of the Borides of Transitions and Rare-Earth Metals, Inorg. Mater., 1967, 3(8), p 1304–1306.

    Google Scholar 

  34. J.S. Haggerty, J.L. O’Brien, and J.F. Wenckus, Growth and Characterization of Single Crystal ZrB2, J. Cryst. Growth, 1968, 3(4), p 291–294.

    Article  ADS  Google Scholar 

  35. Y. Champion, and S. Hagege, A Study of Composite Interfaces in the Zr-ZrB2 System, J. Mater. Sci. Lett., 1992, 11, p 290–293.

    Article  Google Scholar 

  36. Y. Champion, and S. Hagege, Experimental Determination and Symmetry Related Analysis of Orientation Relationships in Heterophase Interfaces: a Case Study in the Zr-B System, Acta Mater., 1996, 44(10), p 4169–4179.

    Article  ADS  Google Scholar 

  37. Y. Champion, and S. Hagege, Structural Analysis of Phases and Heterophase Interfaces in the Zirconium-Boron System, J. Mater. Sci., 1998, 33, p 4035–4041.

    Article  ADS  Google Scholar 

  38. H. Bittermann, and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Ternary System C-Hf-Zr (Carbon-Zirconium-Hafnium), J. Phase Equilib., 2002, 23(3), p 218–235.

    Article  Google Scholar 

  39. D.P. Harmon, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems Technical Report No. AFML-TR-65-2, Part II, Volume XI, 1965

  40. E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Technical Report No. AFML-TR-65-2, Part V, 1969

  41. G. Cacciamani, P. Riani, and F. Valenza, Equilibrium Between MB2 (M = Ti, Zr, Hf) UHTC and Ni: A Thermodynamic Database for the B-Hf-Ni-Ti-Zr System, Calphad, 2011, 35, p 601–619.

    Article  Google Scholar 

  42. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317–425.

    Article  Google Scholar 

  43. O. Redlich, and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 84–88.

    Article  Google Scholar 

  44. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723.Deg.K Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys. Phys. Chim. Biol., 1975, 72(1), p 83–88.

    Article  ADS  Google Scholar 

  45. M. Hillert, and L.-I. Staffansson, The Relationship Between Gibbs Free Energy and the Intersection of the Liquidi in Phase Diagrams of Reciprocal Systems, Metall. Trans. B, 1975, 6B, p 613–616.

    Article  ADS  Google Scholar 

  46. P. Rogl, J. Vřešťál, T. Tanaka, and S. Takenouchi, The B-rich Side of the B-C Phase Diagram, Calphad, 2014, 44, p 3–9.

    Article  Google Scholar 

  47. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9, p 153–190.

    Article  Google Scholar 

  48. Y. Du, R. Schmid-Fetzer, and H. Ohtani, Thermodynamic Assessment of the V-N System, Z. Metallkd., 1997, 88, p 545–556.

    Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (51901063), the Fundamental Research Funds for the Central Universities of China (JZ2021HGTB0094 and PA2021GDGP0059) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Huang, L., Zhang, J. et al. Thermodynamic Assessment of the Ternary B-Hf-Zr System with Refined B-Hf Description. J. Phase Equilib. Diffus. 42, 864–878 (2021). https://doi.org/10.1007/s11669-021-00928-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00928-3

Keywords

Navigation