Skip to main content
Log in

Thermodynamic Modeling of Phase Equilibria in the Nb–Zr–N System

  • Published:
Inorganic Materials Aims and scope

Abstract—

A thermodynamic model is proposed for condensed phases in the ternary system Nb–Zr–N in the range 298–3000 K. The model is based on available experimental data and previously reported models of the constituent binaries Nb–Zr, Nb–N, and Zr–N. It is consistent with a previously reported subsolidus phase diagram of the Nb–Zr–N system and allows one to assess phase equilibria involving liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sheftel, E.N. and Bannykh, O.A., Niobium-base alloys, Int. J. Refract. Met. Hard Mater., 1993–1994, vol. 12, no. 5, pp. 303–314.https://doi.org/10.1016/0263-4368(93)90038-H

    Article  CAS  Google Scholar 

  2. Ban’kovskii, O.I., Moiseev, V.F., Pechkovskii, E.P., and Trefilov, V.I., Phase composition of cast Nb–Zr–N alloys at solidus temperatures, Metallofizika, 1974, no. 53, pp. 103–109.

  3. Holleck, H., Binary and Ternary Carbides and Nitrides of the Transition Metals and Their Phase Relations, Karlsruhe: Kernforschungszentrum, 1981.

    Google Scholar 

  4. Barabash, O.M., Kozyrskii, G.Ya., Shul’zhenko, V.K., and Shurin, A.K., Structure and strength of Nb–ZrN alloys, Izv. Akad. Nauk SSSR, Met., 1976, no. 3, pp. 220–225.

  5. Saunders, N. and Miodownik, A.P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Amsterdam: Elsevier, 1998.

    Google Scholar 

  6. Dinsdale, A.T., SGTE data for pure elements, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1991, vol. 15, no. 4, pp. 317–425.https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  7. Duwez, P. and Odell, F., Phase relationships in the binary systems of nitrides and carbides of zirconium, columbium, titanium, and vanadium, J. Electrochem. Soc., 1950, vol. 97, no. 10, pp. 299–304.

    Article  CAS  Google Scholar 

  8. Toth, L.E., Yen, C.M., Rosner, L.G., and Anderson, D.E., Superconducting critical fields, currents and temperatures in the Nb–Zr–N ternary system, J. Phys. Chem. Solids, 1966, vol. 27, nos. 11–12, pp. 1815–1819. https://doi.org/10.1016/0022-3697(66)90112-0

    Article  CAS  Google Scholar 

  9. Lafaye, P., Toffolon-Masclet, C., Crivello, J.-C., and Joubert, J.-M., Experimental investigations and thermodynamic modelling of the Cr–Nb–Sn–Zr system, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2019, vol. 64, pp. 43–54.https://doi.org/10.1016/j.calphad.2018.11.002

    Article  CAS  Google Scholar 

  10. Huang, W., Thermodynamic assessment of the Nb–N system, Metall. Mater. Trans. A, 1996, vol. 27, no. 11, pp. 3591–3600.https://doi.org/10.1007/BF02595450

    Article  Google Scholar 

  11. Sridar, S., Kumar, R., and Hari Kumar, K.C., Thermodynamic modelling of Ti–Zr–N system, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2017, vol. 56, pp. 102–107.https://doi.org/10.1016/j.calphad.2016.12.003

    Article  CAS  Google Scholar 

  12. Xiaoyan Ma, Changrong Li, Kewu Bai, Ping Wu, and Weijing Zhang, Thermodynamic assessment of the Zr–N system, J. Alloys Compd., 2004, vol. 373, nos. 1–2, pp. 194–201.https://doi.org/10.1016/j.jallcom.2003.10.051

    Article  CAS  Google Scholar 

  13. Hillert, M., The compound energy formalism, J. Alloys Compd., 2001, vol. 320, no. 2, pp. 161–176.https://doi.org/10.1016/S0925-8388(00)01481-X

    Article  CAS  Google Scholar 

  14. Chen, S.L., Zhang, J.Y., Lu, X.G., et al., Application of Graham scan algorithm in binary phase diagram calculation, J. Phase Equilib. Diffus., 2006, vol. 27, no. 2, pp. 121–125.https://doi.org/10.1007/s11669-006-0034-y

    Article  CAS  Google Scholar 

  15. Voskov, A.L., Dzuban, A.V., and Maksimov, A.I., TernAPI program for the calculation of ternary phase diagrams with isolated miscibility gaps by the convex hull method, Fluid Phase Equilib., 2015, vol. 388, pp. 50–58.https://doi.org/10.1016/j.fluid.2014.12.028

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-13-00392 (federal state budget funded science institution Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskov, A.L., Kovalev, I.A., Kochanov, G.P. et al. Thermodynamic Modeling of Phase Equilibria in the Nb–Zr–N System. Inorg Mater 58, 509–515 (2022). https://doi.org/10.1134/S0020168522050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522050119

Keywords:

Navigation