Skip to main content
Log in

Experimental Study of the Individual Effects of Al2O3, CaO and MgO on Gas/Slag/Matte/Spinel Equilibria in Cu-Fe-O-S-Si-Al-Ca-Mg System at 1473 K (1200 °C) and p(SO2) = 0.25 atm

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The individual effects of Al2O3, CaO and MgO on gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si-(Al, Ca, Mg) system at 1473 K (1200 °C) and p(SO2) = 0.25 atm. have been experimentally measured for a range of oxygen partial pressures and matte compositions. The experimental methodology has included the high temperature equilibration of individual samples on a spinel primary phase substrate under controlled gas atmospheres (CO/CO2/SO2/Ar), followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions using electron probe x-ray microanalysis. The experimental results show that the presence of Al2O3, CaO and MgO reduce the iron, sulphur and copper concentrations in the slag phase. Present study is undertaken as part of an integrated approach involving thermodynamic modelling and experimental measurements. The experimental data are compared with predictions obtained using the current thermodynamic database for the Cu-Fe-O-S-Si-(Al, Ca, Mg) system in order to further improve thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.G.I. Davenport et al., Extractive Metallurgy of Copper, 4th ed., Pergamon Press, Oxford, 2002, p 155-171

    Book  Google Scholar 

  2. A. Yazawa and M. Kameda, Fundamental Studies on Copper Smelting. III. Partial Liquidus Diagram for Cu2S-FeS-FeO System, Technol. Rep. Tohoku Univ., 1955, 19(2), p 239-250

    Google Scholar 

  3. A. Yazawa and M. Kameda, Fundamental Studies on Copper Smelting. IV. Solubility of FeO in Copper Matte from SiO2-saturated FeO-SiO2 Slag, Technol. Rep. Tohoku Univ., 1955, 19(2), p 251-261

    Google Scholar 

  4. Kameda, M. and A. Yazawa. The Oxygen Content of Copper Mattes, in Physical Chemistry of Process Metallurgy, Part 2 (TMS Conference Proceedings, Interscience, NY, 1961)

  5. N. Korakas, Etude thermodynamic de l’équilibre entre scories ferro-siliceuses et mattes de cuivre. Application aux problèmes posés par la formation de magnetite lors du traitement des minerais sulfurés de cuivre (Univirsité de Liège, 1964)

  6. U. Kuxmann and F.Y. Bor, Studies on the Solubility of Oxygen in Copper Mattes under Ferric Oxide Slags Saturated with Silica, Erzmetall, 1965, 18, p 441-450

    Google Scholar 

  7. F.Y. Bor and P. Tarassoff, Solubility of Oxygen in Copper Mattes, Can. Metall. Q., 1971, 10(4), p 267-271

    Article  Google Scholar 

  8. A. Geveci and T. Rosenqvist, Equilibrium Relations Between Liquid Copper, Iron-Copper Matte, and Iron Silicate Slag at 1250 °C, Trans. Inst. Min. Metall., 1973, 82, p C193-C201

    Google Scholar 

  9. M. Nagamori, Metal Loss to Slag: Part I. Sulfidic and Oxidic Dissolution of Copper in Fayalite Slag from Low Grade Matte, Metall. Trans. B, 1974, 5(3), p 531-538

    Article  ADS  Google Scholar 

  10. F.J. Tavera and W.G. Davenport, Equilibrations of Copper Matte and Fayalite Slag under Controlled Partial Pressures of Sulfur Dioxide, Metall. Trans. B, 1979, 10B(2), p 237-241

    Article  ADS  Google Scholar 

  11. G.H. Kaiura, K. Watanabe, and A. Yazawa, The Behavior of Lead in Silica-Saturated Copper Smelting Systems, Can. Metall. Q., 1980, 19(2), p 191-200

    Article  Google Scholar 

  12. H. Jalkanen, Copper and Sulfur Solubilities in Silica-Saturated Iron Silicate Slags from Copper Mattes, Scand. J. Metall., 1981, 10(4), p 177-184

    Google Scholar 

  13. A. Yazawa, S. Nakazawa, and Y. Takeda, Distribution Behavior of Various Elements in Copper Smelting Systems, Adv. Sulfide Smelt., 1983, 1, p 99-117

    Google Scholar 

  14. R. Shimpo et al., A Study on the Equilibrium Between Copper Matte and Slag, Can. Metall. Q., 1986, 25(2), p 113-121

    Article  Google Scholar 

  15. F.J. Tavera and E. Bedolla, Distribution of Copper, Sulfur, Oxygen and Minor Elements Between Silica-Saturated Slag, Matte and Copper-Experimental Measurements, Int. J. Miner. Process., 1990, 29(3–4), p 289-309

    Article  Google Scholar 

  16. H. Li and W.J. Rankin, Thermodynamics and Phase Relations of the Fe-O-S-SiO2(sat) System at 1200 °C and the Effect of Copper, Metall. Trans. B, 1994, 25B(1), p 79-89

    Article  Google Scholar 

  17. Y. Takeda, Oxygen Potential Measurement of Iron Silicate Slag–Copper–Matte System, in Proceedings International Conference on Molten Slags, Fluxes Salts ‘97, 5th (Iron and Steel Society, Warrendale, 1997)

  18. Y. Takeda, Copper Solubility in Matte Smelting Slag, in Proceeding International Conference on Molten Slags, Fluxes Salts ‘97, 5th (Iron and Steel Society, Warrendale, 1997)

  19. J.M. Font et al., Solubility of Copper or Nickel in Iron-Silicate Base Slag Equilibrated with Cu2s-FeS or Ni3S2-FeS Matte Under High Partial Pressures of SO2, Metall. Rev. MMIJ, 1998, 15(1), p 75-86

    Google Scholar 

  20. D. Shishin, S.A. Decterov, and E. Jak, Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System, J. Phase Equilib. Diffus., 2018, 39(5), p 456-475

    Article  Google Scholar 

  21. D. Shishin, P.C. Hayes, and E. Jak. Multicomponent Thermodynamic Databases for Complex Non-ferrous Pyrometallurgical Processes, in Extraction 2018 (Springer, Ottawa, 2018).

  22. E. Jak et al., Integrated Experimental Phase Equilibria and Thermodynamic Modelling Studies for Copper Pyrometallurgy, in 9th International Copper Conference, Kobe, Japan (2016), pp. 1316–1331

  23. T. Hidayat et al., Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at T = 1250 °C and p(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2018, 49(4), p 1732-1739

    Article  Google Scholar 

  24. Hidayat, T., et al., Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at T = 1200 °C and p(SO2) = 0.25 atm. Metall. Mater. Trans. B, 2018. 49(4): p. 1750-1765.

  25. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmospheres: Experimental Results at T = 1473 K [1200 °C] and p(SO2) = 0.1 atm, Int. J. Mater. Res., 2018, 49, p 1732-1739

    Google Scholar 

  26. A. Fallah-Mehrjardi et al., Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmospheres: Experimental Results at T = 1473 K [1200 °C] and p(SO2) = 0.25 atm, Metall. Mater. Trans. B, 2017, 48(6), p 3017-3026

    Article  Google Scholar 

  27. A. Fallah-Mehrjardi et al., Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si system in Controlled Gas Atmospheres: Development of Technique, Metall. Mater. Trans. B, 2017, 48(6), p 3002-3016

    Article  Google Scholar 

  28. T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at 1473 K (1200 °C) and p(SO2) = 0.25 atm, J. Phase Equilib. Diffus., 2018, 39(2), p 138-151

    Article  Google Scholar 

  29. D. Shishin et al., Integrated Experimental and Thermodynamic Modelling Study of the Effects of Al2O3, CaO and MgO on Slag-Matte Equilibria in the Cu-Fe-O-S-Si-(Al, Ca, Mg) System, J. Phase Equilib. Diffus., 2018, 40, p 445-461

    Article  Google Scholar 

  30. S. Sineva et al., Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si-Al-Ca-Mg System in Controlled Gas Atmosphere: Experimental Results at 1473 K (1200 °C), 1573 K (1300 C) and p(SO2) = 025 atm, J. Phase Equilib. Diffus., 2020, 41, p 243-256. https://doi.org/10.1007/s11669-020-00810-8

    Article  Google Scholar 

  31. C.W. Bale et al., FactSage Thermochemical Software and Databases, Calphad, 2002, 26(2), p 189-228

    Article  Google Scholar 

  32. C.W. Bale et al., FactSage Thermochemical Software and Databases, 2010–2016, Calphad, 2016, 54, p 35-53

    Article  Google Scholar 

  33. D. Shishin, P.C. Hayes, and E. Jak, Development and Applications of Thermodynamic Database in Copper Smelting, in Copper’19 Conference (Vancouver, 2019)

Download references

Acknowledgments

The authors would like to thank Australian Research Council Linkage program LP140100480, Altonorte Glencore, AngloAmerican Platinum, Atlantic Copper, Aurubis, Boliden, Olympic Dam Operation BHP Billiton, Kazzinc Glencore, Kennecott Rio Tinto, Outotec Oy (Espoo), PASAR Glencore, Umicore, and for the financial support for this study. The authors would like to thank Dr Denis Shishin and Dr Maksym Maksym Shevchenko for assistance in preparation of this paper. The authors would also like to thank the staff of the Centre for Microscopy and Microanalysis, University of Queensland for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Sineva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sineva, S., Fallah-Mehrjardi, A., Hidayat, T. et al. Experimental Study of the Individual Effects of Al2O3, CaO and MgO on Gas/Slag/Matte/Spinel Equilibria in Cu-Fe-O-S-Si-Al-Ca-Mg System at 1473 K (1200 °C) and p(SO2) = 0.25 atm. J. Phase Equilib. Diffus. 41, 859–869 (2020). https://doi.org/10.1007/s11669-020-00847-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00847-9

Keywords

Navigation