Skip to main content
Log in

The 500 °C Isothermal Section of the Mn-Si-Sn Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Mn and Si are common elements in steel and have an important influence on the performance of steel. To analyze the intermetallic compounds formed in tin-base solder welding process, the Mn-Si-Sn alloys were prepared and annealed at 500 °C for 30 days. The phase equilibria in the Mn-Si-Sn system at 500 °C were studied by electron microscopy equipped with energy-dispersive spectrometry and x-ray diffraction. 12 three-phase regions were well determined in the Mn-Si-Sn system at 500 °C, and no ternary compound was found. The binary compound Mn5Si2, which is controversial in the literature, was not observed in the present study. Mn2−xSn (Mn1.8Sn) and Mn3Sn2 phases were detected by XRD rather than the Mn2Sn phase in this work. The solubility of Si in Mn3Sn, Mn2−xSn, Mn3Sn2, and MnSn2 was measured to be 0.7, 1.2, 1.2, and 0.4 at.%, respectively. And the Sn solubility in R-Mn6Si, υ-Mn9Si2, Mn3Si, MnSi, Mn11Si19 at 500 °C is about 0.9, 0.5, 0.3, 0.3 and 0.2 at.%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Chen, Z. Chen, H. Yan, F. Zhang, and K. Liao, Effects of Sn Addition on Microstructure and Mechanical Properties of Mg-Zn-Al Alloys, J. Alloys Compd., 2008, 461(1), p 209-215

    Google Scholar 

  2. N.D. Nam, M.J. Kim, Y.W. Jang, and J.G. Kim, Effect of Tin on the Corrosion Behavior of Low-Alloy Steel in an Acid Chloride Solution, Corros. Sci., 2010, 52(1), p 14-20

    Article  Google Scholar 

  3. T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The Role of Chloride Ion on the Atmospheric Corrosion of Steel and Corrosion Resistance of Sn-Bearing Steel, Corros. Sci., 2012, 62, p 34-41

    Article  Google Scholar 

  4. L.M. Liu, X.D. Qi, and Z.H. Wu, Microstructural Characteristics of Lap Joint Between Magnesium Alloy and Mild Steel with and Without the Addition of Sn Element, Mater. Lett., 2010, 64(1), p 89-92

    Article  Google Scholar 

  5. L. Cho, M.S. Kim, Y.H. Kim, and B.C. De Cooman, Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel During Hot-Dip Galvanizing, Metall. Mater. Trans. A, 2014, 45(10), p 4484-4498

    Article  Google Scholar 

  6. L. Cho and B.C.D. Cooman, Selective Oxidation of TWIP Steel During Continuous Annealing, Steel Res. Int., 2012, 83(4), p 391-397

    Article  Google Scholar 

  7. Y. Kim, J. Lee, K.S. Shin et al., The Influence of the Dew Point on the Wettability of Twinning-Induced-Plasticity Steels by Liquid Zn-0.23 wt% Al, Corros. Sci., 2014, 85, p 364-371

    Article  Google Scholar 

  8. I. Cvijović, I. Arezanović, and M. Piegel, Influence of H2-N2 Atmosphere Composition and Annealing Duration on the Selective Surface Oxidation of Low-Carbon Steels, Corros. Sci., 2006, 48(4), p 980-993

    Article  Google Scholar 

  9. V. Raghavan, Al-Mn-Si (Aluminum-Manganese-Silicon), Journal of Phase Equilibria and Diffusion, 2012, 33, p 140-142

    Article  Google Scholar 

  10. Y.Y. Song, X.P. Su, Y. Liu, H.P. Peng, C.J. Wu, and J.H. Wang, Phase Equilibria of the Cu-Si-Sn System at 700 and 500 °C, J. Phase Equilib. Diffus., 2015, 36, p 493-502

    Article  Google Scholar 

  11. N. Chakraborti and H.L. Lukas, Calculation and Optimization of the Mn-Si Phase Diagram, Calphad, 1989, 13(3), p 293-300

    Article  Google Scholar 

  12. I. Ansara, A.T. Dinsdale, and M.H. Rand, Thermochemical Database for Light Metal Alloys, Vol 2, European Commission, Luxembourg, 1998, p 236-240

    Google Scholar 

  13. P.Y. Chevalier, E. Fischer, and A. Rivet, A Thermodynamic Evaluation of the Mn-Si System, Calphad, 1995, 19(1), p 57-68

    Article  Google Scholar 

  14. Y. Du, J.C. Schuster, F. Weitzer, N. Krendelsberger, B. Huang, Z. Jin, W. Gong, Z. Yuan, and H. Xu, A Thermodynamic Description of the Al-Mn-Si System Over the Entire Composition and Temperature Ranges, Metall. Mater. Trans. A, 2004, 35, p 1613-1628

    Article  Google Scholar 

  15. A. Shulka, Y.B. Kang, and A.D. Pelton, Thermodynamic Assessment of the Si-Zn, Mn-Si, Mg-Si-Zn and Mg-Mn-Si Systems, Calphad, 2008, 32(3), p 470-477

    Article  Google Scholar 

  16. M.K. Paek, J.J. Pak, and Y.B. Kang, Phase Equilibria and Thermodynamics of Mn-C, Mn-Si, Si-C Binary Systems and Mn-Si-C Ternary System by Critical Evaluation, Combined with Experiment and Thermodynamic Modeling, Calphad, 2014, 46, p 92-102

    Article  Google Scholar 

  17. A. Berche, E. Ruiz-Théron, J.C. Tédenac, R.M. Ayral, F. Rouessac, and P. Jund, Thermodynamic Description of the Mn-Si System: An Experimental and Theoretical Work, J. Alloys Compd., 2014, 615, p 693-702

    Article  Google Scholar 

  18. W. Zheng, X.G. Lu, Y. He, Y. Cui, and L. Li, Thermodynamic Assessment of the Fe-Mn-Si System and Atomic Mobility of Its fcc Phase, J. Alloys Compd., 2015, 632, p 661-675

    Article  Google Scholar 

  19. A. Berche, E. Théron-Ruiz, J.C. Tédenac, and P. Jund, Thermodynamic Study of the Ge-Mn-Si System, J. Alloys Compd., 2015, 632, p 10-16

    Article  Google Scholar 

  20. A. Berche, J.C. Tédenac, and P. Jund, Thermodynamic Description of the Cr-Mn-Si System, Calphad, 2016, 55(2), p 181-188

    Article  Google Scholar 

  21. Z. Long, X. Dai, Z. Li, F. Yin, and Z. Jind, Experimental Investigation and Thermodynamic Description of the Li-Si-Mn Ternary System, J. Alloys Compd., 2018, 768, p 686-696

    Article  Google Scholar 

  22. A. Berche, J.C. Tédenac, and P. Jund, Ab-Initio Calculations and CALPHAD Description of Cr-Ge-Mn and Cr-Ge-Si, Calphad, 2015, 49, p 50-57

    Article  Google Scholar 

  23. C.B. Shoemaker and D.P. Shoemaker, The Crystal Structure of Mn5Si2 and the D Phase (V-Fe-Si), Acta Cryst. B, 1976, 32(8), p 2306-2313

    Article  Google Scholar 

  24. G.M. Lukashenko, V.P. Sidorko, and B.Y. Kotur, Phase Composition and Thermodynamic Properties of Alloys of the Manganese-Silicon System in the 25 to 37.5 at.% Silicon Range, Poroshh. Metall., 1981, 8, p 67-70

    Google Scholar 

  25. H. Xu, X. Xiong, and L. Zhang, Phase Equilibria of the Mn-Si-Zn System at 600 °C, Metall. Trans. A, 2009, 40, p 2042-2047

    Article  Google Scholar 

  26. T.B. Massalski, P.R. Subramanian, and H. Okamoto, Binary Alloy Phase Diagrams, ASM, Materials Park, 1990

    Google Scholar 

  27. U.P. Singh, A.K. Pal, L. Chandrasekaran, and K.P. Gupta, Study of the Manganese-Rich End of Mn-Sn System, Trans. Metall. Soc. AIME, 1968, 242, p 1161-1163

    Google Scholar 

  28. E. Wachtel and R. Ulrich, Magnetische Untersuchungen im System Zinn-Mangan im flüssigen und festen Zustand, Z. Metallkde, 1968, 59, p 227-236, (in German)

    Google Scholar 

  29. E. Wachtel, P. Terzieff, and J. Bahle, Constitution and Magnetic Properties of Mn-Rich Cu-Mn and Mn-Sn Alloys, Monatsh. Chem., 1986, 117(12), p 1349-1366, (in German)

    Article  Google Scholar 

  30. J. Miettinen, Thermodynamic Solution Phase Data for Binary Mn-Based Systems, Calphad, 2001, 25(1), p 43-58

    Article  Google Scholar 

  31. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Cu-Sn and Cu-Sn-Mn Systems, Metall. Mater. Trans. A, 2004, 35, p 1641-1654

    Article  Google Scholar 

  32. M. Stange, H. Fjellvag, S. Furuseth, and B.C. Hauback, Crystal Structure and Phase Relations for Mn3Sn2 and Non-Stoichiometric Mn2−xSn, J. Alloys Compd., 1997, 259, p 140-144

    Article  Google Scholar 

  33. R. Olesinski and G. Abbaschian, The Si-Sn (Silicon-Tin) System, Bull. Alloys Phase Diagr., 1984, 5, p 273-276

    Article  Google Scholar 

  34. P. Villars and L.D. Calvert, Pearson Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1991

    Google Scholar 

  35. Materials Data JADE Realease 5, XRD pattern processing, Materials Data Inc.(MDI), 1997

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from the National Science Foundation of China (Grant Nos. 51671036, 51971039) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. This work is also funded by the Education Department of Jiangsu Province (19KJA530001) and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zhai, L., Jiang, S. et al. The 500 °C Isothermal Section of the Mn-Si-Sn Ternary System. J. Phase Equilib. Diffus. 41, 835–845 (2020). https://doi.org/10.1007/s11669-020-00842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00842-0

Keywords

Navigation