Skip to main content
Log in

Thermodynamic Modeling of the B-Ti-Zr System Over the Whole Composition and Temperature Ranges

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic description of the ternary system B-Ti-Zr has been obtained by modelling the Gibbs energy of all individual phases using the CALPHAD (CALculation of PHAse Diagrams) approach. There is no ternary compound in this system. The individual solution phases, i.e. Liquid, (βTi, βZr), TiB, (Ti, Zr)B2 and ZrB12 have been modeled. The modeling covers the whole composition and temperature ranges. The Gibbs energy of ZrB2 in the B-Zr system was reassessed using the two-sublattice model (B, Zr)1(B, Zr)2. A set of self-consistent thermodynamic parameters for the B-Ti-Zr system was obtained by considering the phase diagram data in the ternary system. Comprehensive comparisons between the calculated and measured phase diagram and thermodynamic data showed that the experimental information was satisfactorily accounted for by the present thermodynamic description. The liquidus projection and reaction scheme of the B-Ti-Zr system have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Basu, G.B. Raju, and A.K. Suri, Processing and Properties of Monolithic TiB2-Based Materials, Int. Mater. Rev., 2006, 51, p 352-374

    Article  Google Scholar 

  2. K. Upadhya, J.M. Yang, and W.P. Hoffman, Advanced Materials for Ultrahigh Temperature Structural Applications above 2000 °C, Am. Ceram. Soc. Bull., 1997, 76, p 51-56

    Google Scholar 

  3. Z.M. Li, D. Chen, H.W. Wang, E.J. Lavernia, and A.D. Shan, Nano-TiB2 Reinforced Ultrafine-Grained Pure Al Produced by Flux-Assisted Synthesis and Asymmetrical Rolling, J. Mater. Res., 2014, 29(21), p 2514-2524

    Article  ADS  Google Scholar 

  4. H. Li, L.H. Chai, H.J. Wang, Z.Y. Chen, G.D. Shi, Z.L. Xiang, and T.N. Jin, Fabrication of TiB2/Al Composite by Melt-SHS Process with Different Content of Titanium Powder, J. Mater. Res., 2017, 32(12), p 2352-2360

    Article  ADS  Google Scholar 

  5. B.M. Chen, Q.L. Bi, J. Yang, Y.Q. Xia, and J.C. Hao, Tribological Properties of Cu-Based Composites and in Situ Synthesis of TiN/TiB2, Mat. Sci. Eng. A, 2008, 491, p 315-320

    Article  Google Scholar 

  6. L.J. Guo, X.B. Wang, P.P. Zhang, and H.B. Wang, Synthesis of Fe Based ZrB2 Composite Coating by Gas Tungsten Arc Welding, Mater. Sci. Technol., 2013, 29(1), p 19-23

    Article  Google Scholar 

  7. Z.T. Liu, D.W. Wang, J.M. Li, Q. Huang, and S.L. Ran, Densification of High-Strength B4C-TiB2 Composites Fabricated by Pulsed Electric Current Sintering of TiC-B Mixture, Scripta Mater., 2017, 135, p 15-18

    Article  Google Scholar 

  8. N.S. Karthiselva, S. Kashyap, D. Yadav, B.S. Murty, and S.R. Bakshi, Densifcation Mechanisms during Reactive Spark Plasma Sintering of Titanium Diboride and Zirconium Diboride, Philos. Mag., 2017, 97, p 1588-1609

    Article  ADS  Google Scholar 

  9. J. Yang, L.M. Pan, W. Gu, T. Qiu, Y.Z. Zhang, and S.M. Zhu, Microstructure and Mechanical Properties of in Situ Synthesized (TiB2 + TiC)/Ti3SiC2 Composites, Ceram. Int., 2012, 38, p 649-655

    Article  Google Scholar 

  10. J. Zou, S.G. Huang, K. Vanmeensel, G.J. Zhang, J. Vleugels, and O.V. Biest, Spark Plasma Sintering of Superhard B4C-ZrB2 Ceramics by Carbide Boronizing, J. Am. Ceram. Soc., 2013, 96(4), p 1055-1059

    Article  Google Scholar 

  11. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26(2), p 273-312

    Article  Google Scholar 

  12. L. Zhang, I. Steinbach, and Y. Du, Phase-Field Simulation of Diffusion Couples in the Ni-Al System, Int. J. Mater. Res., 2011, 102(4), p 371-380

    Article  Google Scholar 

  13. V.T. Witusiewicz, A.A. Bondar, U. Hecht, O.A. Potazhevska, and T. Ya Velikanova, Thermodynamic Modelling of the Ternary B-Mo-Ti System with Refined B-Mo Description, J. Alloys Compd., 2016, 655, p 336-352

    Article  Google Scholar 

  14. K.C.H. Kumar, P. Wollants, and L. Delacy, Thermodynamic Assessment of the Ti-Zr System and Calculation of the Nb-Ti-Zr Phase Diagram, J. Alloys Compd., 1994, 206, p 121-127

    Article  Google Scholar 

  15. P. Rogl and P.E. Potter, A Critical Review and Thermodynamic Calculation of the Binary System: Zirconium-Boron, CALPHAD, 1988, 12(2), p 191-204

    Article  Google Scholar 

  16. T. Tokunaga, K. Terashim, H. Ohtani, and M. Hasebe, Thermodynamic Analysis of the Phase Equilibria in the Fe-Zr-B System, Mater. Trans., 2008, 49(11), p 2534-2540

    Article  Google Scholar 

  17. H.M. Chen, F. Zheng, H.S. Liu, L.B. Liu, and Z.P. Jin, Thermodynamic Assessment of B-Zr and Si-Zr Binary Systems, J. Alloys Compd., 2009, 468, p 209-216

    Article  Google Scholar 

  18. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (Science Press, Beijing, 2003), Translated by N.L. Cheng, S.T. Niu, G.Y. Xu, et al., p. 1854

  19. E.J. Huber, E.L. Head, and C.E. Holly, The Heats of Formation of Zirconium Diboride and Dioxide, J. Phys. Chem., 1964, 68, p 3040-3045

    Article  Google Scholar 

  20. G.K. Johnson, E. Greenberg, J.T. Margrave, and W.N. Hubbard, Fluorine Bomb Calorimetry. Enthalpies of Formation of the Diborides of Zirconium and Hafnium, J. Chem. Eng. Data, 1967, 12, p 133-135

    Article  Google Scholar 

  21. E. Rudy and S. Windisch, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Technical Report No. AFML-TR-65-2, Part I, Volume VIII, 1966

  22. Y. Champion and S. Hagege, A Study of Composite Interfaces in the Zr-ZrB2 System, J. Mater. Sci. Lett., 1992, 11, p 290-293

    Article  Google Scholar 

  23. Y. Champion and S. Hagege, Experimental Determination and Symmetry Related Analysis of Orientation Relationships in Heterophase Interfaces: A Case Study in the Zr-B System, Acta Mater., 1996, 44(10), p 4169-4179

    Article  Google Scholar 

  24. Y. Champion and S. Hagege, Structural Analysis of Phases and Heterophase Interfaces in the Zirconium-Boron System, J. Mater. Sci., 1998, 33, p 4035-4041

    Article  ADS  Google Scholar 

  25. T.E. Eckert, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems Technical Report No. AFML-TR-65-2, Part II, Volume XII, 1966

  26. E. Rudy, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Technical Report No. AFML-TR-65-2, Part V, 1969

  27. Y.V. Voroshilov and Y.B. Kuzma, Reaction of Zirconium with the Transition Metals and Boron, Sov. Powder Metall. Metal Ceram., 1969, 8, p 941-944

    Article  Google Scholar 

  28. G. Cacciamani, P. Riani, and F. Valenza, Equilibrium Between MB2 (M = Ti, Zr, Hf) UHTC and Ni: A Thermodynamic Database for the B-Hf-Ni-Ti-Zr System, CALPHAD, 2011, 35, p 601-619

    Article  Google Scholar 

  29. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317-425

    Article  Google Scholar 

  30. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 84-88

    Article  Google Scholar 

  31. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 K. Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys. Phys. Chim. Biol., 1975, 72(1), p 83-88

    Article  ADS  Google Scholar 

  32. M. Hillert and M. Jarl, A Model for Alloying Effects in Ferromagnetic Metals, CALPHAD, 1978, 2, p 227-238

    Article  Google Scholar 

  33. P. Rogl, J. Vrestal, T. Tanaka, and S. Takenouchi, The B-rich Side of the B-C Phase Diagram, CALPHAD, 2014, 44, p 3-9

    Article  Google Scholar 

  34. B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9, p 153-190

    Article  Google Scholar 

  35. Y. Du, R. Schmid-Fetzer, and H. Ohtani, Thermodynamic Assessment of the V-N System, Z. Metallkd., 1997, 88, p 545-556

    Google Scholar 

  36. B. Callmer, L. Tergenius, and J.O. Thomas, X-Ray Powder Profile Refinement of Zirconium in β-Rhombohedral Boron, J. Solid State Chem., 1978, 26, p 275-279

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (51501051), Joint Foundation of Ministry of Education and Equipment Pre-research of China (JD2017XAZC0002), Research fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201510) and the Fundamental Research Funds for the Central Universities (JZ2015HGBZ0091 and JD2016JGPY0005) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zhang, C., Zhang, J. et al. Thermodynamic Modeling of the B-Ti-Zr System Over the Whole Composition and Temperature Ranges. J. Phase Equilib. Diffus. 40, 364–374 (2019). https://doi.org/10.1007/s11669-019-00728-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00728-w

Keywords

Navigation