Skip to main content
Log in

Phase Equilibria of the Ternary Al-Cu-Zn Alloys on Al-Zn Rich Side

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase equilibria of the Al-Cu-Zn system on Al-Zn rich side was experimentally determined with 16 alloys annealed at 360 °C. The annealed alloys were examined by means of x-ray diffraction, electron probe microanalysis and differential scanning calorimetry. Five single-phase regions and seven two-phase regions as well as three three-phase regions, i.e. α-(Al) + θ-Al2Cu + τ′-Al4Cu3Zn, α-(Al) + τ′-Al4Cu3Zn + ε-CuZn4 and α-(Al) + ε-CuZn4 + (Zn), were determined. The partial isothermal section of the Al-Cu-Zn system on Al-Zn rich side at 360 °C was constructed based on the obtained experimental data in this work. It was observed that the solid solution phase α-(Al) would easily decompose into ε-CuZn4, (Zn) and α′-(Al) at the ambient temperature in the early stages. The ternary phase τ′-Al4Cu3Zn would form and ε-CuZn4 would disappear gradually along with the extension of aging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminum Alloys, Mater. Des., 2014, 56, p 862-871

    Article  Google Scholar 

  2. A. Sarhan, E. Zalnezhad, and M. Hamdi, The Influence of Higher Surface Hardness on Fretting Fatigue Life of Hard Anodized Aerospace AL7075-T6 Alloy, Mater. Sci. Eng., A, 2013, 560, p 377-387

    Article  Google Scholar 

  3. Y. Chen, Y. Yang, Z. Feng, G. Zhao, B. Huang, X. Luo, Y. Zhang, and W. Zhang, Microstructure, Microtexture and Precipitation in the Ultrafine-Grained Surface Layer of an Al-Zn-Mg-Cu Alloy Processed by Sliding Friction Treatment, Mater. Charact., 2017, 123, p 189-197

    Article  Google Scholar 

  4. B. Liu, Q. Lei, L. Xie, M. Wang, and Z. Li, Microstructure and Mechanical Properties of High Product of Strength and Elongation Al-Zn-Mg-Cu-Zr Alloys Fabricated by Spray Deposition, Mater. Des., 2016, 96, p 217-223

    Article  Google Scholar 

  5. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Microstructural, Mechanical and Electrochemical Behaviour of a 7017 Al-Zn-Mg Alloy of Different Tempers, Mater. Charact., 2015, 104, p 49-60

    Article  Google Scholar 

  6. Y. Shi, Q. Pan, M. Li, X. Huang, and B. Li, Effect of Sc and Zr Additions on Corrosion Behaviour of Al-Zn-Mg-Cu Alloys, J. Alloys Compd., 2014, 612(41), p 42-50

    Article  Google Scholar 

  7. P. Perrot and J.C. Tedenac, Materials Science International Team, in Al-Zn Binary Phase Diagram Evaluation—Phase Diagrams, Crystallographic and Thermodynamic Data: Datasheet from MSI Eureka in SpringerMaterials, ed. by G. Effenberg (MSI Materials Science International Services GmbH), http://materials.springer.com/msi/docs/sm_msi_r_20_010926_01

  8. J. Gröbner, Materials Science International Team, in Al-Cu Binary Phase Diagram Evaluation—Phase diagrams, Crystallographic and Thermodynamic Data: Datasheet from MSI Eureka in SpringerMaterials, ed. by G. Effenberg (MSI Materials Science International Services GmbH), http://materials.springer.com/msi/docs/sm_msi_r_20_011492_01

  9. J.L. Murray, The Aluminum-Copper System, Int. Met. Rev., 1985, 30(1), p 211-234

    Article  Google Scholar 

  10. S.W. Chen, Y.Y. Chuang, Y. Austin Chang, and M. Chu, Calculation of Phase Diagrams and Solidification Paths of Al-rich AlLiCu Alloys, Met. Trans. A, 1991, 22(12), p 2837-2848

    Article  Google Scholar 

  11. N. Saunders, System Al-Cu, COST 507: thermochemical database for light metal alloys, Definition of Thermodynamical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., European Commission, Luxembourg, 1998, p 28-33

    Google Scholar 

  12. S.M. Liang and R. Schmid-Fetzer, Thermodynamic Assessment of the Al-Cu-Zn System, Part II: Al-Cu Binary System, CALPHAD, 2015, 51, p 252-260

    Article  Google Scholar 

  13. X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Equilibria in the Cu-Rich Portion of the Cu-Al Binary System, J. Alloys. Compd., 1998, 264(1), p 201-208

    Article  Google Scholar 

  14. M. Kowalski and P.J. Spencer, Thermodynamic Reevaluation of the Cu-Zn system, J. Phase Equilib. Diffus., 1993, 14(4), p 432-438

    Article  Google Scholar 

  15. G. Effenberg and S. Ilyenko, Light Metal Systems: Part 2: Selected Systems from Al-Cu-Fe to Al-Fe-Ti, Al-Cu-Zn (Aluminum-Copper-Zinc), Springer, Berlin Heidelberg, 2005

    Google Scholar 

  16. H.H. Arndt and K. Moeller, Die ternäre phase im system kupfer-aluminium-zink: I. Der zerfall der T-phase zwischen 200 und 300°, Z. Metallkd., 1960, 51, p 596-600

    Google Scholar 

  17. H.H. Arndt and K. Moeller, Die ternäre phase im system kupfer-aluminium-zink:II. Das zustandsgebiet der T-Phase oberhalb 500°, Z. Metallkd., 1960, 51, p 656-662

    Google Scholar 

  18. S. Murphy, The Structure of the T′ Phase in the System Al-Cu-Zn, Met. Sci., 1975, 9(1), p 163-168

    Article  Google Scholar 

  19. H.J. Dorantes-Rosales, V.C.M. López-Hirata, J.L. Méndez-Velázquez, M.L. Saucedo-Muñoz, and D. Hernández-Silva, Microstructure Characterization of Phase Transformations in a Zn-22 wt%Al-2 wt%Cu alloy by XRD, SEM, TEM and FIM, J. Alloys. Compd., 2000, 313(1), p 154-160

    Article  Google Scholar 

  20. H. Chen, X. Xin, D.Y. Dong, Y.P. Ren, and S.M. Hao, Study on the Stability of T′ Phase in the Al-Zn-Cu Ternary System, Acta Metall. Sin., 2004, 17(3), p 269-273

    ADS  Google Scholar 

  21. Y.P. Ren, G.W. Qin, W.L. Pei, and S.M. Hao, The (α1 + α2) Miscibility Gap of the Al-Zn-Cu System at 360 °C, Scr. Mater., 2009, 61(1), p 36-39

    Article  Google Scholar 

  22. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Russell Township, 1995, p 8754-8755

    Google Scholar 

  23. S. Murphy, Solid-Phase Reactions in the Low-Copper Part of the Aluminum-Copper-Zinc System, Z. Metallkd., 1980, 71(2), p 96-102

    Google Scholar 

  24. M. Durman and S. Murphy, An Electron Metallographic Study of Pressure Die-Cast Commercial Zinc-Aluminium-Based Alloy ZA27, J. Mater. Sci., 1997, 32, p 1603-1611

    Article  ADS  Google Scholar 

  25. T.J. Chen and Y. Hao, Effects of Al and Cu on Decomposition Rates of α′ and β Phases in Zn-Al Alloys, Hot Work. Technol., 2005, 10, p 4-7

    ADS  Google Scholar 

  26. R. Ciach and M. Podosek, Phase Transformations in Al-Zn Alloys Solidifying at Various Rates, J. Therm. Anal., 1992, 38, p 2077-2085

    Article  Google Scholar 

  27. Y. Takaku, L. Felicia, and I. Ohnuma, Interfacial Reaction between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders, J. Electron. Mater., 2008, 37(3), p 314-323

    Article  ADS  Google Scholar 

  28. S.M. Liang and R. Schmid-Fetzer, Thermodynamic Assessment of the Al-Cu-Zn System, Part III: Al-Cu-Zn Ternary System, CALPHAD, 2016, 52, p 21-37

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation of China (Grant Nos. 51531009, 51671219), and Sino-German Center for promotion of Science (Grant No. GZ 1208) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, F., Liu, S. et al. Phase Equilibria of the Ternary Al-Cu-Zn Alloys on Al-Zn Rich Side. J. Phase Equilib. Diffus. 39, 356–365 (2018). https://doi.org/10.1007/s11669-018-0640-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0640-5

Keywords

Navigation