Skip to main content
Log in

Influence of the Composition on the Solidification Path, Microstructure Evolution and Mechanical Properties of Al-Cu-Mg Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of the initial composition on the solidification path, microstructure evolution, thermophysical properties and mechanical properties of Al-Cu-Mg alloys was investigated. The solidification paths of the investigated alloys were determined by analyzing the solidification structure, and then the experimentally determined paths were compared with those from the calculated results. Three of the investigated alloys experienced typical ternary eutectic solidification, and the other four alloys experienced quasiperitectic reactions. Due to differences in the initial compositions, different eutectic morphologies were formed during the solidification process. The binary eutectic phases, (α-Al + Al2Cu) and (α-Al + Al6CuMg4), and the (α-Al + Al6CuMg4 + Al8Mg5) ternary eutectic phase tended to exhibit divorced growth, and the (α-Al + Al2CuMg), (α-Al + Al6CuMg4) and (α-Al + Al2Cu + Al2CuMg) eutectic phases tended to exhibit coupled growth. The results indicated that the initial composition, solidification path, microstructure and morphology could greatly affect the melting enthalpy, microhardness and compressive strength of the investigated Al-Cu-Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.W. Chen and C.C. Huang, Solidification Curves of Al-Cu, Al-Mg and Al-Cu-Mg Alloys, Acta Mater., 1996, 44, p 1955–1965

    Article  CAS  Google Scholar 

  2. A. Roósz and H.E. Exner, Numerical Modelling of Dendritic Solidification in Aluminium-Rich Al-Cu-Mg Alloys, Acta Metall. Mater., 1990, 38, p 375–380

    Article  Google Scholar 

  3. F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, and Y.A. Chang, Microstructure and Microsegregation in Al-Rich Al-Cu-Mg Alloys, Acta Mater., 1999, 47, p 489–500

    Article  CAS  Google Scholar 

  4. I. Vušanović and M.J.M. Krane, Microsegregation During Solidification of Al-Cu-Mg alloys with Varying Composition, Int. Commun. Heat Mass Transf., 2002, 29, p 1037–1046

    Article  Google Scholar 

  5. Q. Du, D.G. Eskin, and L. Katgerman, An Efficient Technique for Describing a Multi-component Open System Solidification Path, Calphad., 2008, 32, p 478–484

    Article  CAS  Google Scholar 

  6. E.H. Yan, X.Z. Li, Y.Q. Su, D.M. Liu, D.M. Xu, J.J. Guo, and H.Z. Fu, Prediction of the Solidification Path of Al-4.37Cu-27.02Mg Ternary Eutectic Alloy with a Unified Microsegregation Model Coupled with Thermo-Calc, Int. J. Mater. Res., 2013, 104, p 244–254

    Article  CAS  Google Scholar 

  7. R. Chen, Q.Y. Xu, and B.C. Liu, Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys, Acta Metall. Sin., 2015, 28, p 173–181

    Article  Google Scholar 

  8. S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215

    Article  Google Scholar 

  9. S.C. Wang and M.J. Starink, Two Types of S Phase Precipitates in Al-Cu-Mg Alloys, Acta Mater., 2007, 55, p 933–941

    Article  CAS  Google Scholar 

  10. J.Z. Liu, S.S. Yang, S.B. Wang, J.H. Chen, and C.L. Wu, The Influence of Cu/Mg Atomic Ratios on Precipitation Scenarios and Mechanical Properties of Al-Cu-Mg Alloys, J. Alloys Compd., 2014, 613, p 139–142

    Article  CAS  Google Scholar 

  11. Y. Gan, D. Zhang, W. Zhang, and Y. Li, Effect of Cooling Rate on Microstructure and Mechanical Properties of Squeeze Cast Al-Cu-Mg Alloy, Int. J. Cast Met. Res., 2015, 28, p 50–58

    Article  CAS  Google Scholar 

  12. Z.W. Qi, B.Q. Cong, B.J. Qi, H.Y. Sun, G.Z. Jia, and L. Ding, Microstructure and Mechanical Properties of Double-Wire + Arc Additively Manufactured Al-Cu-Mg Alloys, J. Mater. Process. Technol., 2018, 255, p 347–353

    Article  CAS  Google Scholar 

  13. R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute Clustering in Al-Cu-Mg Alloys During the Early Stages of Elevated Temperature Ageing, Acta Mater., 2010, 58, p 4923–4939

    Article  CAS  Google Scholar 

  14. Y.Q. Xu, L.H. Zhan, Z.Y. Ma, M.H. Huang, K. Wang, and Z. Sun, Effect of Heating Rate on Creep Aging Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2017, 688, p 488–497

    Article  CAS  Google Scholar 

  15. Y.Q. Xu, L.H. Zhan, M.H. Huang, R.H. Shen, Z.Y. Ma, L.Z. Xu, K. Wang, and X. Wang, Deformation Behavior of Al-Cu-Mg Alloy during Non-isothermal Creep Age Forming Process, J. Mater. Process Technol., 2018, 255, p 26–34

    Article  CAS  Google Scholar 

  16. I. Zuiko and R. Kaibyshev, Aging Behavior of an Al-Cu-Mg Alloy, J. Alloys Compd., 2018, 759, p 108–119

    Article  CAS  Google Scholar 

  17. P.L.M. Kanta, V.C. Srivastava, K. Venkateswarlu, S. Paswan, B. Mahato, G. Das, K. Sivaprasad, and K.G. Krishna, Corrosion Behavior of Ultrafine-Grained AA2024 Aluminum Alloy Produced by Cryorolling, Int. J. Miner. Metall. Mater., 2017, 24, p 1293–1305

    Article  Google Scholar 

  18. P. Xia, Z.Y. Liu, W.T. Wu, Q. Zhao, P.Y. Ying, and S. Bai, Texture Effect on Fatigue Crack Propagation Behavior in Annealed Sheets of an Al-Cu-Mg Alloy, JMEPEG, 2018, 27, p 4693–4702

    Article  CAS  Google Scholar 

  19. J.K. Sunde, D.N. Johnstone, S. Wenner, A.T.J.V. Helvoort, P.A. Midgley, and R. Holmestad, Crystallographic Relationships of T-/S-phase Aggregates in an Al-Cu-Mg-Ag Alloy, Acta Mater., 2019, 166, p 587–596

    Article  CAS  Google Scholar 

  20. S. Bai, X.L. Yi, Z.Y. Liu, J. Wang, J.G. Zhao, and P.Y. Ying, The Influence of Preaging on the Strength and Precipitation Behavior of a Deformed Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2018, 764, p 62–72

    Article  CAS  Google Scholar 

  21. G.W. Bo, F.L. Jiang, Z.Y. Dong, G. Wang, and H. Zhang, Revealing the Influence of Pre-precipitation Microstructure on Hot Workability in an Al-Cu-Mg-Zr Alloy, Mater. Sci. Eng. A, 2019, 755, p 147–157

    Article  CAS  Google Scholar 

  22. W.L. Zhang, D.H. Xiao, T. Li, J.D. Du, and D.Y. Ding, Microstructure and Mechanical Properties of Two-stage Aged Al-Cu-Mg-Ag-Sm Alloy, Rare Met., 2019, 38, p 42–51

    Article  Google Scholar 

  23. Y.F. Song, X.F. Ding, X.J. Zhao, L.R. Xiao, and C.X. Yu, The Effect of SiC Addition on the Dimensional Stability of Al-Cu-Mg Alloy, J. Alloys Compd., 2018, 750, p 111–116

    Article  CAS  Google Scholar 

  24. J.W. Geng, G. Liu, T.R. Hong, M.L. Wang, D. Chen, N.H. Ma, and H.W. Wang, Tuning the Microstructure Features of In Situ Nano TiB2/Al-Cu-Mg Composites to Enhance Mechanical Properties, J. Alloys Compd., 2019, 775, p 193–201

    Article  CAS  Google Scholar 

  25. W.W. Yang, Z.M. Guo, L.C. Guo, H.Q. Cao, J. Luo, and A.P. Ye, In Situ Fabrication and Properties of AlN Dispersion Strengthened 2024 Aluminum Alloy, Int. J. Miner. Metall. Mater., 2014, 21, p 1228–1232

    Article  CAS  Google Scholar 

  26. N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, JMEPEG, 2017, 26, p 3376–3386

    Article  CAS  Google Scholar 

  27. S.E. Hernández-Martínez, J.J. Cruz-Rivera, C.G. Garay-Reyes, and J.L. Hernández-Rivera, Experimental and Numerical Analyses of the Consolidation Process of AA 7075-2 wt.% ZrO2 Powders by Equal Channel Angular Pressing, JMEPEG, 2019, 28, p 154–161

    Article  Google Scholar 

  28. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, and A. Moreira, Horizontally Solidified Al-3 wt.%Cu-(05 wt.%Mg) Alloys: Tailoring Thermal Parameters, Microstructure, Microhardness, and Corrosion Behavior, Acta Metall. Sin., 2019, 32, p 695–709

    Article  CAS  Google Scholar 

  29. J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, and O.L. Rocha, Microstructural Evolution During Unsteady-Statehorizontal Solidification of Al-Si-Mg (356) Alloy, Trans. Nonferrous Met. Soc. China, 2018, 28, p 1073–1083

    Article  CAS  Google Scholar 

  30. R. Chen, Y.F. Shi, Q.Y. Xu, and B.C. Liu, Effect of Cooling Rate on Solidification Parameters and Microstructure of Al-7Si-0.3Mg-0.15Fe Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1645–1652

    Article  CAS  Google Scholar 

  31. G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, Thermo-Calc Based Multicomponent Microsegregation Model and Solidification Paths Calculations, China Foundry, 2012, 9, p 269–274

    CAS  Google Scholar 

  32. G.W. Zhao, C. Ding, X.C. Ye, C.H. Huang, and H.H. Wu, Influences of Initial Compositions, Dendrite Morphologies and Solid-Back Diffusion on Solidification Path of Al-Si-Mg Alloys, J. Phase Equilib. Diffus., 2018, 39, p 212–225

    Article  CAS  Google Scholar 

  33. G.W. Zhao, C. Ding, and M. Gu, Effects of Cooling Rate and Initial Composition on the Solidification Path and Microstructure of Al-Cu-Si Alloys, Int. J. Cast Met. Res., 2019, 32, p 36–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51604162), the Opening Fund of Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance (Grant No. 2017KJX12) and the applied basic research projects of Yichang Science and Technology Bureau (Grant No. A18-302-a05). We wish to thank Harbin Institute of Technology for providing the thermodynamic calculation and data of Al-Cu-Mg alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangWei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Chen, J., Ding, C. et al. Influence of the Composition on the Solidification Path, Microstructure Evolution and Mechanical Properties of Al-Cu-Mg Alloys. J. of Materi Eng and Perform 28, 6980–6992 (2019). https://doi.org/10.1007/s11665-019-04409-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04409-0

Keywords

Navigation