Skip to main content
Log in

Influence of the Exchange-Correlation Functional on the Energy of Formation and Magnetic Behavior of Binary D03 Intermetallic Compounds FeM3 (M = Ti, Zr, Hf)

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In recent years, ab-initio calculations based on the density functional theory became a commonly used tool in supporting, improving or even refuting experimental results in different research fields. In this work we discuss some accuracy aspects inherent to ab-initio electronic structure calculations regarding the understanding of different structural, electronic and magnetic physical properties. In particular, we discuss the dependence of the magnetic ground-state and the formation energy with the exchange-correlation functional for the binary intermetallic compounds FeTi3, FeZr3 and FeHf3 with D03 crystal structure. All exchange-correlation schemes used were based on the generalized gradient approximation. It is the aim of the present paper to call the attention of the community to some fundamental aspects of the calculations that can influence the final results and the conclusions derives from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In order to determine the intrinsic error (for a given system) a comparison with accurate experimental results or with high-level quantum chemistry methods must be done. Only a comparison with accurate experimental results or with high-level quantum chemistry methods must be done. Quantum Chemistry methods are highly accurate, can reach an almost exact solution and do not suffer from the choice of an exchange-correlation functional, but the computational effort dramatically increases with the number of atoms and in practice they can only be obtained for relatively small systems (atoms or small molecules). When the system size is larger (as in condensed matter) these methods are unavoidable.

References

  1. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864-B871

    Article  ADS  MathSciNet  Google Scholar 

  2. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133-A1138

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals, Crit. Rev. Solid State Mater. Sci., 2014, 39, p 1-24

    Article  ADS  Google Scholar 

  4. A.E. Mattsson, In Pursuit of the “Divine” Functional, Science, 2002, 298, p 759-760

    Article  Google Scholar 

  5. F. Tran, J. Stelzl, and P. Blaha, Rungs 1 to 4 of DFT Jacob’s ladder: Extensive Test on the Lattice Constant, Bulk Modulus, and Cohesive Energy of Solids, J. Chem. Phys., 2016, 144, p 204120-1-204120-21

    ADS  Google Scholar 

  6. R. Car, Density Functional Theory: Fixing Jacob’s Ladder, Nat. Chem., 2016, 8, p 820-821

    Article  Google Scholar 

  7. C.M. Ceperley and D.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, p 566-569

    Article  ADS  Google Scholar 

  8. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, 45, p 13244-13249

    Article  ADS  Google Scholar 

  9. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868

    Article  ADS  Google Scholar 

  10. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett., 2008, 100, p 136406-136409

    Article  ADS  Google Scholar 

  11. Z. Wu and R.E. Cohen, More Accurate Generalized Gradient Approximation for Solids, Phys. Rev. B., 2006, 73, p 235116-1-235116-6

    ADS  Google Scholar 

  12. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.N.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G. Zhang, and S. Cottenier, Reproducibility in Density Functional Theory Calculations of Solids, Science, 2016, 351, p aad3000-1-aad3000-7

    Article  Google Scholar 

  13. K. Lejaeghere, J. Jaeken, V. Van Speybroeck, and S. Cottenier, Ab Initio Based Thermal Property Predictions at a Low Cost: An Error Analysis, Phys. Rev. B, 2014, 89, p 014304-1-014304-14

    Article  ADS  Google Scholar 

  14. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007

    Book  MATH  Google Scholar 

  15. E. Sjöostedt, L. Nordström, and D.J. Singh, An Alternative Way of Linearizing the Augmented Plane-Wave Method, Solid State Commun., 2000, 114, p 15-20

    Article  ADS  Google Scholar 

  16. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Efficient Linearization of the Augmented Plane-Wave Method, Phys. Rev. B, 2001, 64, p 195134-1

    ADS  Google Scholar 

  17. S. Cottenier, Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction (KU Leuven, Belgium, 2002). http://www.wien2k.at/reg_user/textbooks

  18. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Ed., Technical Universität Wien, Austria, 1999,

    Google Scholar 

  19. F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Performance on Molecules, Surfaces, and Solids of the Wu-Cohen GGA Exchange-Correlation Energy Functional, Phys. Rev. B, 2007, 75, p 115131-1-115131-14

    Article  ADS  Google Scholar 

  20. F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev., 1947, 71, p 809-824

    Article  ADS  MATH  Google Scholar 

  21. R. Kohlhaas, P. Donner, and N. Schmitz-Pranghe, The Temperature-Dependence of the Lattice Parameters of Iron, Cobalt, and Nickel in the High Temperature Range, Z. Angew. Phys., 1967, 23, p 245-249

    Google Scholar 

  22. R.R. Pawar and V.T. Deshpande, The Anisotropy of the Thermal Expansion of α-Titanium, Acta Crystallogr., 1968, 24A, p 316-317

    Article  ADS  Google Scholar 

  23. B. Olinger and J.C. Jamieson, Zirconium: Phases and Compressibility to 120 Kilobars, High Temp. High Press., 1973, 5, p 123-131

    Google Scholar 

  24. R. Russell, On the Zr-Hf System, J. Appl. Phys., 1953, 24, p 232-233

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was performed and supported by the MINCyT-FWO program FW/14/03-VS.020.15 N, the MINCyT-DAAD grant DA13/02, UNNOBA, UNLP and Consejo Nacional de Investigaciones Cientıfícas y Técnicas (CONICETunder PIP60002. Calculations were carried out using the computational facilities at IFLP and Departamento de Física (UNLP), and the Huge Cluster, University of Aarhus, Denmark. L. E dedicates this work to the memory of Axel Svane, a colleague, friend and long-time researcher in this field who recently passed away.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gil Rebaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil Rebaza, A.V., Fernández, V.I., Eleno, L.T.F. et al. Influence of the Exchange-Correlation Functional on the Energy of Formation and Magnetic Behavior of Binary D03 Intermetallic Compounds FeM3 (M = Ti, Zr, Hf). J. Phase Equilib. Diffus. 38, 231–237 (2017). https://doi.org/10.1007/s11669-017-0533-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0533-z

Keywords

Navigation