Skip to main content
Log in

A Modified Model to Predict Self-Diffusion Coefficients in Metastable fcc, bcc and hcp Structures

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A modified model was proposed to predict the self-diffusion coefficient (D) in the fcc, bcc and hcp structures with the inputs of the lattice parameter and melting point, which are determinable from first-principle calculations and calculation of phase diagram (CALPHAD) method, respectively. The anisotropy of diffusion coefficient in the hcp structure and the distinction of valence in different structures are considered in the present work. As examples, self-diffusion coefficients of Al, Nb, Zn, Au, Ag, Cr, Mo, Ru, Tc and Sn with the fcc, bcc and hcp structures were calculated, and the influencing factors to diffusion coefficient were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Gupta, Direct Measurement of Diffusion at Temperatures Less Than 0.5 Tm, Thin Solid Films, 1975, 25(1), p 231-244

    Article  ADS  Google Scholar 

  2. R.E. Pawel, Procedure for Stripping Anodic Oxide Films from Tantalum + Niobium, Rev. Sci. Instrum., 1964, 35(8), p 1066-1067

    Article  ADS  Google Scholar 

  3. R.E. Pawel and T.S. Lundy, Submicron Sectioning Technique for Analyzing Diffusion Specimens of Tantalum + Niobium, J. Appl. Phys., 1964, 35(2), p 435-438

    Article  ADS  Google Scholar 

  4. R.F. Peart and D.H. Tomlin, Diffusion of Solute Elements in Beta-Titanium, Acta Metall., 1962, 10(Feb), p 123-124

    Google Scholar 

  5. P.L. Gruzin, “Problems of Metallography and Physics of Metals,” Fourth Symposium, 1955, AEC-tr-2924, p 329

  6. J. Askill, Correlation of Self Diffusion Data in Metals as a Function of Thermal Expansion Coefficient, Phys. Status Solidi, 1965, 11(1), p K49-K50

    Article  ADS  Google Scholar 

  7. F.S. Buffington and M. Cohen, On Self-Diffusion in Cubic Metals, Acta Metall., 1954, 2(5), p 660-666

    Article  Google Scholar 

  8. S. Dushman and I. Langmuir, The Diffusion Coefficient in Solids and its Temperature Coefficient, Phys. Rev., 1922, 20, p 113

    Google Scholar 

  9. B.N. Oshcherin, O Vzaimosvyazi Energii Aktivatsii Samodiffuzii S Nekotorymi Fizicheskimi Svoistami, Phys. Status Solidi, 1963, 3(1–4), p K61-K65

    Google Scholar 

  10. C. Zener, Ring Diffusion in Metals, Acta Crystallogr., 1950, 3(5), p 346-354

    Article  Google Scholar 

  11. A.D. Leclaire, Body-Centered Cubic Metal, ASM, Metals Park, OH, 1965, p 10

  12. G.B. Gibbs, C. E. G. B., Report RD/B/N, 1964, 355, Nov

  13. O.D. Sherby and M.T. Simnad, Prediction of Atomic Mobility in Metallic Systems, ASM Trans. Q., 1961, 54, p p227-p240

    Google Scholar 

  14. A.D. Leclaire, On the Theory of Impurity Diffusion in Metals, Philos. Mag., 1962, 7(73), p 141-167

    Article  ADS  Google Scholar 

  15. G. Neumann, A Model for the Calculation of Monovacancy and Divacancy Contributions to the Impurity Diffusion in Noble-Metals, Phys. Status Solidi B, 1987, 144(1), p 329-341

    Article  ADS  Google Scholar 

  16. M. Eberhart, A Quantum Description of the Chemical Bond, Philos. Mag. B, 2001, 81(8), p 721-729

    ADS  Google Scholar 

  17. T. Hehenkamp, Absolute Vacancy Concentrations in Noble-Metals and Some of Their Alloys, J. Phys. Chem. Solids, 1994, 55(10), p 907-915

    Article  ADS  Google Scholar 

  18. L. Brewer, A Most Striking Confirmation of Engel Metallic Correlation, Acta Metall. Mater., 1967, 15(3), p 553-556

    Article  Google Scholar 

  19. V. Srikrishnan and P.J. Ficalora, Diffusion in Transition Metals and Alloys, Metall. Mater. Trans. A, 1975, 6(11), p 1623-1629

    Google Scholar 

  20. A.D. LeClaire, On the Theory of Impurity Diffusion in Metals, Philos. Mag., 1962, 7(72), p 141-167

    Article  ADS  Google Scholar 

  21. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425

    Article  Google Scholar 

  22. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, Ab Initio Lattice Stability in Comparison with CALPHAD Lattice Stability, CALPHAD, 2004, 28(1), p 79-90

    Article  Google Scholar 

  23. A.K. Rajagopal and J. Callaway, Inhomogeneous Electron-Gas, Phys. Rev. B, 1973, 7(5), p 1912-1919

    Article  ADS  Google Scholar 

  24. B. Delley, An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules, J. Chem. Phys., 1990, 92(1), p 508-517

    Article  ADS  Google Scholar 

  25. B. Delley, From Molecules to Solids with the DMol(3) Approach, J. Chem. Phys., 2000, 113(18), p 7756-7764

    Article  ADS  Google Scholar 

  26. J.P. Perdew and W. Yue, Accurate and Simple Density Functional for the Electronic Exchange Energy—Generalized Gradient Approximation, Phys. Rev. B, 1986, 33(12), p 8800-8802

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18), p 3865-3868

    Article  ADS  Google Scholar 

  28. V.A. Finkel, G.P. Kovtun, and M.I. Palatnik, X-Ray-Diffraction Study of Thermal-Expansion of Ruthenium, Osmium and Rhenium at 77-300 Degrees K, Phys. Met. Metallogr. USSR, 1971, 32(1), p 231

    Google Scholar 

  29. D.J. Lam, J.B. Darby, L.J. Norton, and J.W. Downey, Alpha-Manganese Phases Containing Technetium-99, Nature, 1961, 192(480), p 744

    Article  ADS  Google Scholar 

  30. R.R. Pawar, Lattice Expansion of Molybdenum, Curr. Sci., 1967, 36(16), p 428

    Google Scholar 

  31. J. Spreadborough and J.W. Christian, High-Temperature X-Ray Diffractometer, J. Sci. Instrum., 1959, 36(3), p 116-118

    Article  ADS  Google Scholar 

  32. M.E. Straumanis, Redetermination of Lattice Parameters, Densities and Thermal Expansion Coefficients of Silver and Gold, and Perfection of Their Structures, Monatsh. Chem., 1971, 102(5), p 1377-1386

    Article  Google Scholar 

  33. M.E. Straumanis and C.C. Weng, The Absorption and Refraction Corrections and the Lattice Constant of Chromium, Am. Mineral., 1956, 41(5–6), p 437-448

    Google Scholar 

  34. D. Ablitzer, Diffusion of Niobium, Iron, Cobalt, Nickel and Copper in Niobium, Philos. Mag., 1977, 35(5), p 1239-1256

    Article  ADS  Google Scholar 

  35. J. Askill, Tracer Diffusion in Chromium-Nickel System, Phys. Status Solidi A, 1971, 8(2), p 587-596

    Article  ADS  Google Scholar 

  36. J. Askill and D.H. Tomlin, Self-Diffusion in Molybdenum, Philos. Mag., 1963, 8(90), p 997-1001

    Article  ADS  Google Scholar 

  37. J.G.E.M. Backus, H. Bakker, and H. Mehrer, Self-Diffusion Measurements in Silver at Low-Temperatures Using Single-Crystals and Slightly Deformed-Crystals, Phys. Status Solidi B, 1974, 64(1), p 151-162

    Article  ADS  Google Scholar 

  38. M. Beyeler and Y. Adda, Determination of Activation Volumes for Diffusion of Atoms in Gold Copper and Aluminum, J. Phys-Paris, 1968, 29(4), p 345-352

    Google Scholar 

  39. J. Bihr, H. Mehrer, and K. Maier, Comparison between Microsectioning Studies of Low-Temperature Self-Diffusion in Silver, Phys. Status Solidi A, 1978, 50(1), p 171-178

    Article  ADS  Google Scholar 

  40. F.R. Bonanno and C.T. Tomizuka, Effect of Hydrostatic Pressure on Rate of Diffusion of Silver Indium and Antimony in Single Crystals of Silver, Phys. Rev., 1965, 137(4A), p 1264-1267

    Article  ADS  Google Scholar 

  41. M.B. Bronfin, S.Z. Bokshtein, and A.A. Zhukhovitsky, Determination of Diffusion Coefficients by the Method of Measuring the Shift of the Activity Curve, Ind. Lab., 1960, 26(7), p 886-889

    Google Scholar 

  42. W. Bussmann, C. Herzig, H.A. Hoff, and J.N. Mundy, Isotope Effect in Niobium Self-Diffusion, Phys. Rev. B, 1981, 23(12), p 6216-6222

    Article  ADS  Google Scholar 

  43. W. Danneberg and E. Krautz, Selbstdiffusionsuntersuchungen an Molybdan, Z. Naturforsch. A Phys. Sci., 1961, 16(9), p 854-857

  44. R.H. Dickerson, R.C. Lowell, and C.T. Tomizuka, Effect of Hydrostatic Pressure on Self-Diffusion Rate in Single Crystals of Gold, Phys. Rev., 1965, 137(2A), p A613-A619

    Article  ADS  Google Scholar 

  45. D. Duhl, K.I. Hirano, and M. Cohen, Diffusion of Iron, Cobalt and Nickel in Gold, Acta Metall., 1963, 11(1), p 1-6

    Article  Google Scholar 

  46. R.E. Einziger, J.N. Mundy, and H.A. Hoff, Niobium Self-Diffusion, Phys. Rev. B, 1978, 17(2), p 440-448

    Article  ADS  Google Scholar 

  47. A. Gainotti and L. Zecchina, A Method for Measuring Small Diffusion Coefficients, Nuovo Cim. B, 1965, 40(1), p 295-299

    Article  ADS  Google Scholar 

  48. G. Ghosh, Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater., 2001, 49(14), p 2609-2624

    Article  Google Scholar 

  49. H.M. Gilder and D. Lazarus, Self-Diffusion in Gold, J. Phys. Chem. Solids, 1965, 26(12), p 2081-2082

    Article  ADS  Google Scholar 

  50. W.C. Hagel, Self-Diffusion in Solid Chromium, Trans. TMS AIME, 1962, 224(3), p 430-434

    ADS  Google Scholar 

  51. C. Herzig, H. Eckseler, W. Bussmann, and D. Cardis, Temperature-Dependence of Isotope Effect for Self-Diffusion and Cobalt Impurity-Diffusion in Gold, J. Nucl. Mater., 1978, 69–7(1–2), p 61-69

    Article  ADS  Google Scholar 

  52. F.H. Huang and H.B. Huntington, Diffusion of Sb124, Cd109, Sn113, and Zn65 in Tin, Phys. Rev. B, 1974, 9(4), p 1479-1488

    Article  ADS  Google Scholar 

  53. V.N. Kaygorodov, S.M. Klotsman, A.N. Timofeyev, and I.S. Trakhtenberg, Diffusion in Polycrystalline Silver, Self-Diffusion of Silver, Phys. Met. Metallogr. USSR, 1968, 25(5), p 150

    Google Scholar 

  54. N.Q. Lam, S.J. Rothman, H. Mehrer, and L.J. Nowicki, Self-Diffusion in Silver at Low-Temperatures, Phys. Status Solidi B, 1973, 57(1), p 225-236

    Article  ADS  Google Scholar 

  55. T.S. Lundy and J.F. Murdock, Diffusion of Al-26 and Mn-54 in Aluminum, J. Appl. Phys., 1962, 33(5), p 1671-1673

    Article  ADS  Google Scholar 

  56. T.S. Lundy, F.R. Winslow, R.E. Pawel, and C.J. Mchargue, Diffusion of Nb-95 and Ta-182 in Niobium (Columbium), Trans. TMS AIME, 1965, 233(8), p 1533-1539

    Google Scholar 

  57. K. Maier, H. Mehrer, and G. Rein, Self-Diffusion in Molybdenum, Z. Metallkd., 1979, 70(4), p 271-276

    Google Scholar 

  58. S.M. Makin, A.H. Rowe, and A.D. Leclaire, Self-Diffusion in Gold, Proc. Phys. Soc. London, Sect. B, 1957, 70(6), p 545-552

  59. J.N. Mundy, H.A. Hoff, J. Pelleg, S.J. Rothman, L.J. Nowicki, and F.A. Schmidt, Self-Diffusion in Chromium, Phys. Rev. B, 1981, 24(2), p 658-665

    Article  ADS  Google Scholar 

  60. J.N. Mundy, C.W. Tse, and W.D. Mcfall, Isotope-Effect in Chromium Self-Diffusion, Phys. Rev. B, 1976, 13(6), p 2349-2357

    Article  ADS  Google Scholar 

  61. P. Reimers and D. Bartdorff, Autodiffusion and Isotopic Effect in Silver Monocrystals, Phys. Status Solidi B, 1972, 50(1), p 305-310

    Article  ADS  Google Scholar 

  62. G. Rein and H. Mehrer, Effect of Hydrostatic-Pressure and Temperature on the Self-Diffusion Rate in Single-Crystals of Silver and Gold, Philos. Mag. A, 1982, 45(3), p 467-492

    Article  ADS  Google Scholar 

  63. R. Resnick and L.S. Castleman, The Self-Diffusion of Columbium, Trans. Am. Inst. Min. Metall. Eng., 1960, 218(2), p 307-310

    Google Scholar 

  64. S.J. Rothman, N.L. Peterson, and J.T. Robinson, Isotope Effect for Self-Diffusion in Single Crystals of Silver, Phys. Status Solidi, 1970, 39(2), p 635-645

    Article  Google Scholar 

  65. W. Rupp, U. Ermert, and R. Sizmann, Self-Diffusion Measurements in Gold Single Crystals Between 286 Degrees C and 412 Degrees C, Phys. Status Solidi, 1969, 33(2), p 509-516

    Article  Google Scholar 

  66. Y. Serruys, Electromigration Du Nb-95 Et Du Tantale-182 Dans Le Niobium, Scr. Metall., 1982, 16(4), p 365-366

    Article  Google Scholar 

  67. T.E. Volin and R.W. Balluffi, Annealing Kinetics of Voids and Self-Diffusion Coefficient in Aluminum, Phys. Status Solidi, 1968, 25(1), p 163-172

    Article  Google Scholar 

  68. R. Messer, S. Dais, and D. Wolf, “Detection of Vacancy-Induced Self-Diffusion by Rotating-Frame Spin-Lattice Relaxation in Aluminum,” 18th Ampere Congress, 1975, Nottingham, p 327-328

  69. S. Dais, R. Messer, and A. Seeger, Nuclear-Magnetic-Resonance Study of Self-Diffusion in Aluminium, Mater. Sci. Forum, 1987, 15–18, p 419-424

    Article  Google Scholar 

  70. M. Werner and H. Mehrer, Diffusion in Metals and Alloys, Dineta 82-Diffusion in Metal and Alloys, F.J. Kedves and D.L. Beke, Eds., Trans Tech Publications, Zurich, 1983, p 393

  71. C. Zener, Imperfection in Nearly Perfect Crystals, Wiley, New York, 1950

    Google Scholar 

  72. P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York, 1963

    Google Scholar 

Download references

Acknowledgment

This work was jointly supported by National Natural Science Foundation of China (Nos. 50771088, 50425101), International S&T Cooperation Projects of China, Ministry of Science and Technology (No. 2009DFA52170), Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 707037), National Basic Research Program of China (973 Program) (No. 2012CB825701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J.J., Wang, C.P. & Liu, X.J. A Modified Model to Predict Self-Diffusion Coefficients in Metastable fcc, bcc and hcp Structures. J. Phase Equilib. Diffus. 34, 17–24 (2013). https://doi.org/10.1007/s11669-012-0185-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-012-0185-y

Keywords

Navigation