Skip to main content
Log in

Thermodynamic optimization of the Co-Zn system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Literature information and authors’ experimental data have been used for the evaluation of optimized polynomial coefficients serving to calculate the cobalt (Co)-zinc (Zn) phase diagram. The programs BINGSS and THERMO-CALC have been used for the optimization. The binary liquid phase, the solid Co-based face-centered-cubic (fcc) and hexagonal close-packed solutions, as well as the intermediate β-, β1-, and γ-compounds have been treated as disordered substitutional phases. The phases with narrow homogeneity ranges (δ, γ1, and γ2) have been modeled as stoichimetric Co2Zn15, CoZn7, and CoZn15, respectively. The calculated phase diagram and thermodynamic quantities are in agreement with the experimental data. For the first time, a eutectoid decomposition (at around 658 K) of the fcc solutions has been predicted. Moreover, the calculations have shown the possibility for a magnetically induced miscibility gap involving both forms (paramagnetic and ferromagnetic) of the fcc solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lewkonja: “Equilibria Between Liquid and Solid Zn-Rich Cobalt-Zinc Phases,” Z. Anorg. Chem., 1908, 59, pp. 319–22.

    Article  Google Scholar 

  2. W. Pierce and M. Palmerton: “Studies on the Constitution of Binary Zinc-Base Alloys,” Trans. AIME, 1923, 68, pp. 776–95.

    Google Scholar 

  3. W. Ekman: “X-ray Studies of the Cobalt-Zinc Gamma-Phase,” Z. Physikal. Chem., 1931, B12, pp. 57–78.

    Google Scholar 

  4. N. Parravano and V. Caglioti: “On the Structure of the Cobalt-Zinc Gamma-Phase,” Mem. Accad. Italia, Cl. Sci. Fis. Mat. Nat., 1932, 3, pp. 1–21.

    Google Scholar 

  5. U. Hashimoto: Nippon Kinzoku Gakkai-Shi, 1937, 1, pp. 177–90.

    Google Scholar 

  6. W. Köster and E. Wagner: “Effect of the Elements Al, Ti, V, Cu, Zn, Sn and Sb on the Polimorphic Transition of the Cobalt,” Z. Metallkde, 1937, 29, pp. 230–32.

    Google Scholar 

  7. J. Schramm: “The Cobalt-Zinc System,” Z. Metallkde.; 1938, 30, pp. 10–14.

    Google Scholar 

  8. J. Schramm: “The Heats of Formation for the Three-Phase Transformations in the Binary Alloys of Zinc With Iron. Cobalt, Nickel and Manganese,” Z. Metallkde., 1938, 30, pp. 131–35.

    Google Scholar 

  9. J. Schramm: “X-Ray Investigation of Phase and Phase Limits of the Zinc Alloy Systems With Iron. Cobalt and Nickel,” Z. Metallkde., 1938, 30, pp. 122–30.

    Google Scholar 

  10. J. Schramm: “The Magnetic Susceptibility of the Alloys of the Zinc With Nickel, Cobalt and Iron,” Z. Metallkde., 1938, 30, pp. 327–34.

    Google Scholar 

  11. F. Gotzl, F. Halla, and J. Schramm: “δ1 and ξ Phases in the Systems Fe-Zn and Co-Zn,” Z. Metallkde., 1941, 33, p. 375.

    Google Scholar 

  12. J. Schramm: “Co-Zn System,” Z. Metallkde., 1941, 33, pp. 46–48.

    Google Scholar 

  13. F. Pawlek: “Influence of Iron Metals on the Zinc Properties,” Z. Metallkde., 1944, 36, pp. 105–11.

    Google Scholar 

  14. A.J.P. Meyer and P. Taglang: “On the Ferromagnetism of the Beta-1 Phase of the Co-Zn Alloys,” Compt. Rend., 1951, 232, pp. 1914–16.

    Google Scholar 

  15. F. Lihl and E. Weisberg: “Phase Boundaries in the System Co-Zn,” Z. Metallkde., 1955, 46, pp. 579–81.

    Google Scholar 

  16. W. Köster and H. Schmid: “The State of the Beta-Phase in the System Co-Zn.” Z. Metallkde., 1955, 46, pp. 468–69.

    Google Scholar 

  17. M. Hansen and K. Anderko: Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, NY, 1958, p. 1488.

    Google Scholar 

  18. P. Brown: “The Structure of the ξ-Phase in Transition Metal-Zinc Alloy Systems,” Acta Crystallogr., 1962, 15, pp. 608–12.

    Article  Google Scholar 

  19. V. Melikhov and A. Presnjakov: Structure and Properties of Electron Phases, Nauka, Alma-Ata, Kazakhstan, USSR, 1973 (in Russian).

  20. S. Budurov and G.P. Vassilev: “The Cobalt Side of the Phase Diagram Cobalt-Zinc,” Z. Metallkde., 1976, 67, pp. 170–72.

    Google Scholar 

  21. S. Budurov, G.P. Vassilev, and L. Mandadjieva: “Thermodynamics of Cobalt-Zinc and Nickel-Zinc Austenites,” Z. Metallkde., 1976, 67, pp. 307–10.

    Google Scholar 

  22. S. Budurov and G.P. Vassilev: “Thermodynamics of the β-and γ-Phases in the Nickel-Zinc and Cobalt-Zinc Systems,” Z. Metallkde., 1977, 68, pp. 795–98.

    Google Scholar 

  23. A. Morton: “Inversion Domains in Gamma-brass Type Phases—Stabilization Mechanism—Role of Electron-Concentration,” Phys. Stat. Sol.(a), 1977, 44, pp. 205–14.

    Article  ADS  Google Scholar 

  24. A. Mozeva, D. Nenov, and N. Gidicova: “Determination of Activity of Zinc in Liquid Cobalt and Nickel-alloys,” Arch. Eisenhuettenwes., 1977, 48, pp. 533–34.

    Google Scholar 

  25. G.P. Vassilev and S. Budurov: “Kinetics of Intermetallic Phase Layers Growth in the Co-Zn System,” Annual of the University of Sofia, Faculty of Chemistry, 1977/1978, 72, pp. 25–36.

    Google Scholar 

  26. M. Hillert and M. Jarl: “Model for Alloying Effects in Ferromagnetic Metals,” Calphad, 1978, 2, pp. 227–38.

    Article  Google Scholar 

  27. L. Arnberg and S. Westman: “A Discussion of the Ordering in Some Vacancy-Containing Gamma Brasses,” Z. Kristallographie, 1980, 152, pp. 103–08.

    Article  Google Scholar 

  28. S. Ali and V. Geiderich: “Thermodynamic Properties of Solid Co-Zn Alloys,” Zh. Fiz. Khim. 1981, 67, pp. 1248–51. (in Russian).

    Google Scholar 

  29. G. Inden: “The Role of Magnetism in the Calculation of Phase Diagrams,” Physica, 1981, 103B, pp. 82–100.

    Google Scholar 

  30. W.B. Pearson: “Vacancies and Atomic Ordering in Gamma Brasses of Ni, Pd. and Pt With Zn or Cd,” Z. Kristallographie, 1981, 156, pp. 281–94.

    Article  Google Scholar 

  31. H. Comert and J. Pratt: “The Thermodynamic Properties of Solid Cobalt-Zinc Alloys,” Thermoch. Acta, 1982, 59, pp. 267–85.

    Article  Google Scholar 

  32. K.H.J. Buschow, P.G. van Engen. and R. Jongebreur: “Magneto-Optical Properties of Metallic Ferromagnetic Materials,” J. Magnetism Magn. Mater., 1983, 38, pp. 1–22.

    Article  ADS  Google Scholar 

  33. A.K. Niessen, A.R. Miedema, F.R. de Boer, and R. Boom: “Model Predictions for the Enthalpy of Formation of Transition Metal Alloys 2,” Calphad, 1983, 7, pp. 51–70.

    Article  Google Scholar 

  34. A.F. Guillermet: “Critical Evaluation of the Thermodynamic Properties of Cobalt,” Intern. J. Thermod., 1987, 8, pp. 481–510.

    Article  Google Scholar 

  35. T. Nishizawa and K. Ishida: “The Cobalt System,” Bull. Alloy Phase Diagr., 1980, 4, pp. 387–90.

    Google Scholar 

  36. A.T. Dinsdale: “SGTE Data for Pure Elements,” CALPHAD, 1991, 15, pp. 317–425.

    Article  Google Scholar 

  37. A. Ray, S. Smith, and J. Scofield: “Study of the Phase Transformation of Cobalt,” J. Phase Equilibria, 1991, 12, pp. 644–47.

    Google Scholar 

  38. M. Kowalski and P.J. Spencer: “Thermodynamic Reevaluation of the Cu-Zn System,” J. Phase Equilibria, 1993, 14, pp. 432–38.

    Google Scholar 

  39. G.P. Vassilev: “Assessment of the Equilibrium between Solid and Liquid Cobalt-Zinc Solutions,” Cryst. Res. Technol., 1993, 28, pp. 57–62.

    Article  Google Scholar 

  40. G.P. Vassilev and S. Budurov: “Growth Kinetics of Cobalt-Zinc Intermediate Phase Layers,” J. Alloys Compounds, 1993, 199, pp. 197–201.

    Article  Google Scholar 

  41. H.L. Lukas, S. Fries, U. Kattner, and J. Weiss: BINGGS, BINFKT, Version 95-1, Max-Planck-Institute of Metall Science, Stuttgart, Germany, 1995.

  42. T. Nishizawa: “Effect of Magnetic Transition on Phase Equilibria in Iron Alloys,” J. Phase Equilibria, 1995, 16, pp. 379–89.

    Google Scholar 

  43. T. Takayama, S. Shinohara, K. Ishida, and T. Nishizawa: “Anomalies in Phase Equilibria due to Magnetic Transition in Fe-Zn, Co-Zn and Fe-Co-Zn Systems,” J. Phase Equilibria, 1995, 16, pp. 390–95.

    Google Scholar 

  44. T. Massalski: Binary Phase Diagrams [CD-ROM], 2nd ed., 1996, ASM International, Materials Park, OH.

  45. Yu.A. Ryabikin, V.D. Melikhov, and O.V. Zashkvara: “Paramagnetic Resonance Studies of the Co-Zn Gamma-Brass Structure,” The Physics of Metals and Metallography, 1996, 81(3), pp. 255–62 (translated from Russian).

    Google Scholar 

  46. G.P. Vassilev, T.G. Acebo, and J.-C. Tedenac: “Thermodynamic Optimization of the Ni-Zn System,” J. Phase Equilibria, 2000, 21, pp. 287–301.

    Article  Google Scholar 

  47. M. Jiang, C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, G.P. Vassilev, and K. Ishida: “Thermodynamic Calculation of Phase Equilibria in Cu-Ni-Zn System,” J. Phys. Chem. Solids. 2003 (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassiley, G.P., Jiang, M. Thermodynamic optimization of the Co-Zn system. J Phs Eqil and Diff 25, 259–268 (2004). https://doi.org/10.1007/s11669-004-0115-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-004-0115-8

Keywords

Navigation