Skip to main content
Log in

Surface tension and thermodynamic properties of liquid Ag-Bi solutions

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

With the maximum bubble pressure method, the density and surface tension were measured for five Ag-Bi liquid alloys (X Bi=0.05, 0.15, 0.25, 0.5, and 0.75), as well as for pure silver. The experiments were performed in the temperature range 544–1443 K. Linear dependences of both density and surface tension versus temperature were observed, and therefore the experimental data were described by linear equations. The density dependence on concentration and temperature was derived using the polynomial method. A similar dependence of surface tension on temperature and concentration is presented. Next, the Gibbs energy of formation of solid Bi2O3, as well as activities of Bi in liquid Ag-Bi alloys, were determined by a solid-state electromotive force (emf) technique using the following galvanic cells: Ni, NiO, Pt/O −2/W, Ag X Bi (1−X), Bi 2 O 3(s). The Gibbs energy of formation of solid Bi2O3 from pure elements was derived: \(\Delta G_{f(\alpha - Bi_2 O_3 )}^0 \)=−598 148 + 309.27T [J · mol−1] and \(\Delta G_{f(\delta - Bi_2 O_3 )}^0 \)=−548 008 + 258.94T [J · mol−1]; the temperature and the heat of the α → δ transformation for this solid oxide were calculated as 996 K and 50.14 J · mol−1. Activities of Bi in the liquid alloys were determined in the temperature range from 860–1075 K, for five Ag-Bi alloys (X Ag=0.2, 0.35, 0.5, 0.65, 0.8), and a Redlich-Kister polynomial expansion was used to describe the thermodynamic properties of the liquid phase. Using Thermo-Calc software, the Ag-Bi phase diagram was calculated. Finally, thermodynamic data were used to predict surface tension behavior in the Ag-Bi binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sugden: J. Chem. Soc., 1924, 121, pp. 858–68.

    Article  Google Scholar 

  2. J.A.V. Butler: Proc. Roy. Soc., 1932, A135, pp. 347–75.

    ADS  Google Scholar 

  3. E.A. Guggenheim: Trans. Faraday Soc., 1937, 33, pp. 151–56.

    Article  Google Scholar 

  4. O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, 40, pp. 345–48.

    Article  Google Scholar 

  5. O.J. Kleppa: J. Phys. Chem., 1956, 60, pp. 446–52.

    Article  Google Scholar 

  6. T.P. Hoar and D.A. Melford: Trans. Faraday Soc., 1957, 53, pp. 315–26.

    Article  Google Scholar 

  7. Z. Grzegorczyk: Roczniki Chemii, 1960, 34, pp. 621–23.

    Google Scholar 

  8. Z. Grzegorczyk: Roczniki Chemii, 1961, 35, pp. 307–15.

    Google Scholar 

  9. G. Gattow and H. Schroder: Z. Anorg. Allg. Chemie, 1962, 318, pp. 176–89.

    Article  Google Scholar 

  10. M.W. Nathans and M. Leider: J. Phys. Chem., 1962, 66, pp. 2012–16.

    Article  Google Scholar 

  11. A.T. Aldred and I.N. Pratt: Trans. Faraday Soc., 1963, 59, pp. 673–78.

    Article  Google Scholar 

  12. J.B. Raynor: Bunsenges. Ber., 1963, 67, pp. 629–32.

    Article  Google Scholar 

  13. R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelly: Selected Values of Thermodynamic Properties of Metals and Alloy, Wiley, New York-London, 1963.

    Google Scholar 

  14. T.E. Faber and D.E. Ziman: Philos. Mag., 1965, 11, pp. 153–73.

    Article  ADS  Google Scholar 

  15. K. Itagaki and A. Yazawa: J. Jpn. Inst. Metals, 1968, 32, pp. 1294–300.

    Article  Google Scholar 

  16. G.G. Charette and S.N. Flengas: J. Electrochem. Soc., 1968, 11, pp. 796–804.

    Article  Google Scholar 

  17. W. Volk: Applied Statistics for Engineers, 2nd ed., McGraw-Hill Book Company, New York, NY, 1969, pp. 260–83.

    Google Scholar 

  18. A.B. Bhatia and D.E. Thornton: Phys. Rev., 1970, B2, pp. 3004–12.

    Article  ADS  Google Scholar 

  19. R. Castanet, Y. Claire, M. Gilbert, and G. Laffitte: Rev. Hautes Temper Refract., 1970, 7, pp. 51–59 (in French).

    Google Scholar 

  20. A.V.R. Rao and V.B. Tare: Scripta Metall., 1971, 5, pp. 807–11.

    Article  Google Scholar 

  21. D. Chatterji and J.V. Smith: J. Electrochem. Soc., 1973, 120, pp. 889–93.

    Article  Google Scholar 

  22. B. Predel and A. Emam: Z. Metallkd., 1973, 64, pp. 496–501.

    Google Scholar 

  23. G.M. Mehrota, M.G. Frohberg, and M.L. Kapoor: Z. Phys. Chem., 1976, 99, pp. 304–11.

    Article  Google Scholar 

  24. B. Zimmermann, E.T Henig, and H.L. Lukas: Z. Metallkd., 1976, 67, pp. 815–20.

    Google Scholar 

  25. B. Predel and H. Bankstahl: Z. Metallkd., 1976, 67, pp. 793–99.

    Google Scholar 

  26. Z. Moser, M. Kucharski, and K. Rzyman: J. Electrochem. Soc., 1978, 125, pp. 692–97.

    Article  Google Scholar 

  27. S.N. Zadumkin, Ch.I. Ibrachimov, and D.T. Ozniew: Izv. VUZ, Cvet. Metall., 1979, 22, pp. 82–85.

    Google Scholar 

  28. F. Sommer, D. Eschenweck, and B. Predel: Z. Metallkd., 1980, 71, pp. 249–52.

    Google Scholar 

  29. K. Fitzner: Thermochim. Acta, 1980, 35, pp. 277–86.

    Article  Google Scholar 

  30. D. Schmid, V. Behrens, and Th. Hehenkamp: Acta Metall., 1988, 36, pp. 621–25.

    Article  Google Scholar 

  31. Anon.: Binary Alloy Phase Diagrams, vol. 1, 2nd ed., T.B. Massalski, ed., ASM International, Materials Park, OH, 1990.

  32. K. Kameda and K. Yamaguchi: J. Jpn. Inst. Metals, 1991, 55, pp. 536–44.

    Article  Google Scholar 

  33. A.T. Dinsdale: Calphad, 1991, 15, pp. 317–425.

    Article  Google Scholar 

  34. I. Karakaya and W.T. Thompson: J. Phase Equilibria, 1993, 14, pp. 525–30.

    Article  Google Scholar 

  35. S. Hassam, M. Gambino, and J.P. Bros: Z. Metallkd., 1994, 85, pp. 460–71.

    Google Scholar 

  36. T. Tanaka and T. Iida: Steel Research, 1994, 65, pp. 21–28.

    Article  Google Scholar 

  37. T. Tanaka, K. Hack, T. Iida, and S. Hara: Z. Metallkde., 1996, 87, pp. 380–89.

    Google Scholar 

  38. T. Tanaka, K. Hack, and S. Hara: MRS Bull., 1999, 24, pp. 45–50.

    Article  Google Scholar 

  39. W. Gasior, Z. Moser, and J. Pstruś: J. Phase Equilibria, 2001, 22, pp. 20–25.

    Article  Google Scholar 

  40. Z. Moser, W. Gasior, and J. Pstruś: J. Phase Equilibria, 2001, 22, pp. 254–58.

    Article  Google Scholar 

  41. Z. Moser, W. Gasior, and J. Pstruś: J. Electron. Mater., 2001, 30, pp. 1104–11.

    Article  ADS  Google Scholar 

  42. Z. Moser, W. Gasior, J. Pstruś, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida: J. Electronic Mater., 2001, 30, pp. 1120–28.

    Article  ADS  Google Scholar 

  43. I. Egry: Z. Metallkde., 2001, 92, pp. 50–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasior, W., Pstruś, J., Moser, Z. et al. Surface tension and thermodynamic properties of liquid Ag-Bi solutions. JPE 24, 40–49 (2003). https://doi.org/10.1007/s11669-003-0005-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-003-0005-5

Keywords

Navigation