Skip to main content
Log in

Failure Analysis of TP347H Austenitic Heat-Resistant Steel Tube in a 600 MW Subcritical Thermal Power Unit

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The failure mechanism of TP347H austenitic heat-resistant steel tube serviced in boiler superheater in a 600 MW subcritical thermal power unit is presented in this paper. Through microstructure observation, energy-dispersive spectrometry analysis, and selected electron diffraction, the mechanism of TP347H superheater bend tube failure is found to be attributed to intergranular corrosion cracking, more M23C6 and primary NbC(N) phase precipitating and coarsening along the grain boundary and formation of high content of slip lines and α′-martensite structure. The α′-martensite kept the Kurdjumov–Sachs (K-S) orientation relationships with parent austenite phase (γ-parent), which generated in TP347H bend tube may be related to the deformation-induced martensite (DIM) during rolling and cold working. The α′-martensite nucleated mainly at the grain boundary intersection between the twin crystal and γ-parent and grew inwards along the twin band. The dislocation density at the intersection is larger, and the secondary NbC(N) phase inhibited the nucleation of α'-martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu. Chi Chengyu, X.X. Hongyao, Research and development of austenitic heat-resistant steels for 600 °C superheat /reheater tubes of USC power plant boilers. World Iron Steel. 12(04), 50–65 (2012)

    Google Scholar 

  2. Z. Zheng, J. Zhang, X. Sun et al., Failure analysis of the TP347H austenitic stainless steel tube of boiler reheater in a coal-fired power plant. Eng. Fail. Anal. 121, 105154 (2021)

    Article  CAS  Google Scholar 

  3. C. Guoxing, Z. Long, Z. Kexin et al., Analysis of surface cracks on TP347H stainless steel tube. Mater. Mech. Eng. 34(03), 80–83 (2010)

    Google Scholar 

  4. Y. Li, G. Lei, W. Guan et al., Influence of mechanical stresses on pitting corrosion of stainless steel. J. Chin. Soc. Corros. Protect. 39(03), 215–226 (2019)

    Google Scholar 

  5. L. Hong, G. Min, On intergranular corrosion of austenitic stainless steel. Corros. Sci. Protect. Technol. 18(5), 357–360 (2006)

    Google Scholar 

  6. O.V. Kasparova, Peculiarities of intergranular corrosion of silicon-containing austenitic stainless steels. Prot. Met. 5, 425–431 (2004)

    Article  Google Scholar 

  7. E.R. Hwang, S.G. Kang, Intergranular corrosion of stainless steel in molten carbonate salt. J. Mater. Sci. Lett.Lett. 16, 1387–1391 (1997)

    Article  CAS  Google Scholar 

  8. U. Krupp, I. Roth, H. Chist et al., In situ SEM observation and analysis of martensitic transformation during short fatigue crack propagation in metastable austenitic steel. Adv. Eng. Mater. 12(04), 255–261 (2010)

    Article  CAS  Google Scholar 

  9. Y. Huajie, J.H. Zhang, X. Yongbo, Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD. J. Mater. Sci. Technol. 24(06), 819–828 (2008)

    Google Scholar 

  10. G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation. Metall. Trans. A. 6(04), 791–795 (1975)

    Article  Google Scholar 

  11. K. Sato, M. Ichinose, Y. Hirotsu et al., Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 29(10), 868–877 (1989)

    Article  CAS  Google Scholar 

  12. K. Yan, D. Bhattacharyya, Q. Lian et al., Martensitic phase transformation and deformation behavior of Fe–Mn–C–Al twinning-induced plasticity steel during high-pressure torsion. Adv. Eng. Mater. 16(07), 927–932 (2014)

    Article  CAS  Google Scholar 

  13. G.B. Olson, M. Cohen, Stress-assisted isothermal martensitic transformation: application to TRIP steels. Metall. Trans. A. 13(11), 1907–1914 (1982)

    Article  CAS  Google Scholar 

  14. W. Wei, W. Zhiwu, Li. Wensheng et al., Thermodynamic equilibrium phases of TP347H steel with different Cr and Ni content. Heat Treat. Met. 41(10), 99–101 (2016)

    Google Scholar 

  15. G. Guo Laijia, D.P. Shuchao et al., Microstructures and tensile properties of T23, T91, TP347H steel tube after long-term service. Mater. Mech. Eng. 44(09), 56–61 (2020)

    Google Scholar 

  16. J. Erneman, M. Schwind, H.O. Andrén et al., The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing. Acta Mater. Mater. 54(1), 67–76 (2006)

    CAS  Google Scholar 

  17. R. Lagneborg, The martensite transformation in 18%Cr-8%Ni steels. Acta Metall. Metall. 12(07), 823–843 (1964)

    Article  CAS  Google Scholar 

  18. D.T. Llewellyn, Work harding effects in austenitic stainless steels. Mater. Sci. Technol. 13(05), 389–400 (1997)

    Article  CAS  Google Scholar 

  19. S.S.M. Tavares, D. Fruchart, S. Miraglia, A magnetic study of the reversion of martensite α′ in a 304 stainless steel. J. Alloy. Compd. 307(1–2), 311–317 (2000)

    Article  CAS  Google Scholar 

  20. V. Seetharaman, R. Krishnan, Influence of the martensitic transformation on the deformation behaviour of an AISI 316 stainless steel at low temperatures. J. Mater. Sci. 16(02), 523–530 (1981)

    Article  CAS  Google Scholar 

  21. S. Zhigang, M. Hong, C. Xionghua et al., Martensitic structure of S30432 steel after high-temperature stress aging. Trans. Mater. Heat Treat. 37(06), 120–124 (2016)

    Google Scholar 

  22. C. Hao, G. Kewei, C. Wuyang et al., Stress corrosion cracking enhancing martensite transformation of type 304 stainless steel. Acta Metall. Sin. Metall. Sin. 38(08), 857–860 (2002)

    Google Scholar 

  23. T. Fukuda, T. Aoki, Y. Isobe et al., Microchemical and microstructural changes of austenitic steels caused by proton irradiation following helium implantation. J. Nucl. Mater.Nucl. Mater. 258–263(10), 1694–1699 (1998)

    Article  Google Scholar 

  24. P.L. Mangonon, G. Thomas, The martensite phases in 304 stainless steel. Metall. Trans. 1(06), 1577–1586 (1970)

    Article  CAS  Google Scholar 

  25. R.P. Reed, The spontaneous martensitic transformations in 18% Cr, 8% Ni steels. Acta Metall. Metall. 10(09), 865–877 (1962)

    Article  CAS  Google Scholar 

  26. A. Sato, E. Chishima, K. Soma et al., Shape memory effect in γ⇄ε transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall. Metall. 30(06), 1177–1183 (1982)

    Article  CAS  Google Scholar 

  27. Y. Gang, H. Chongxiang, W. Shiding et al., Strain-induced martensitic transformation in 304L austenitic stainless steel under ECAP deformation. Acta Metal. Sinica. 45(08), 906–911 (2009)

    Google Scholar 

  28. L. Wei, Li. Zhibin, W. Xiang et al., Effect of strain rate on strain induced α′-martenstie transformation and mechanical response of austenitic stainless steel. Acta Metall. Sin. Metall. Sin. 45(03), 285–291 (2009)

    Google Scholar 

  29. S. Jintao, H. Longgang, Z. Jinrong et al., Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel. Acta Metall. Sin. Metall. Sin. 52(08), 945–955 (2016)

    Google Scholar 

  30. Xu. Yong, Z. Shihong, C. Ming et al., Effect of loading modes on mechanical property and strain induced martensite transformation of austenitic stainless steels. Acta Metall. Sin. Metall. Sin. 49(7), 775–782 (2013)

    Article  Google Scholar 

  31. Y. Fan, H. Jianlong, Study on strain induced martensite in 304 austenitic stainless steel. Trans. Mater. Heat Treat. 33(03), 104–109 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yan, J., Zhang, J. et al. Failure Analysis of TP347H Austenitic Heat-Resistant Steel Tube in a 600 MW Subcritical Thermal Power Unit. J Fail. Anal. and Preven. 24, 650–658 (2024). https://doi.org/10.1007/s11668-024-01867-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-024-01867-0

Keywords

Navigation