Skip to main content
Log in

Failure Investigation on Delamination of Polydimethylsiloxane-Based Light-Emitting Diode Encapsulating Coating

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Polymeric encapsulation or packaging materials have gained great significance on efficacy and reliability of light-emitting diodes (LEDs). In one of the four-wheeler applications, headlamp illumination issue was observed due to failure of LED polymeric coating during the running condition. In the present work, a set of characterization techniques were employed to identify the root causes of LED failure caused by the delamination of polymeric encapsulation coating and provided the possible remedies. For root cause analysis and further failure prevention, field failure LEDs and defect-free LEDs were analyzed. The LED coating was scratched from field failure and defect-free LEDs surface, and set of characterization methods have been employed for chemical, thermal, mechanical, and morphological analysis. The filler loading and their dispersion played major role in delamination of the polydimethylsiloxane (PDMS) coating. From the set of experiments, it was observed that the delamination of the coatings was caused by the higher filler content and their random dispersion. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyze the thermal characteristics of LED coatings. Scanning electron microscopy (SEM) and polarized optical microscopy (POM) were used to explore the morphological analysis of LED coatings. SEM and TGA analysis confirmed the presence of titanium dioxide (TiO2) filler and concentration in the PDMS coating. The concentrations and dispersions of titanium dioxides principally showed the major influence on defected and defect-free LED coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Wellbrock, D. Ludin, L. Röhrle, W. Gerstlberger, Int. J. Corp. Soc. Responsib. 5, 11 (2020)

    Google Scholar 

  2. A.F. Requardt, K. Ihme, M. Wilbrink, A. Wendemuth, I.E.T. Intell, Transp. Syst. 14, 1265 (2020)

    Google Scholar 

  3. I. Chandkoti, A.T. Naikwadi, M. Mali, S.S. Tata, J. Fail. Anal. Prev. 22, 1590 (2022)

    Article  Google Scholar 

  4. B. Kang, B. Yong, K. Park, Int. J. 11, 737 (2010)

    Google Scholar 

  5. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, IEEE/OSA J. Disp. Technol. 3, 160 (2007)

    Article  CAS  Google Scholar 

  6. R. Lenk, C. Lenk, in Practical Lighting Design With LEDs (2011)

  7. J.D. Bullough, E.T. Donnell, M.S. Rea, Accid. Anal. Prev. 53, 65 (2013)

    Article  Google Scholar 

  8. A. Rammohan, C. RameshKumar, in 2017 International Conference Microelectronic Devices, Circuits System. ICMDCS 2017 2017-Janua, p. 1 (2017)

  9. R. Singh, M. Mochizuki, T. Yamada, T. Nguyen, Appl. Therm. Eng. 166, 114733 (2020)

    Article  Google Scholar 

  10. A. Ponniran, A.N.A.M. Sor, A. Joret, H.A. Munir, Int. J. Integr. Eng. 3, 11 (2011)

    Google Scholar 

  11. S. Kajiyama, T. Machida, I.E.E.J. Trans, Electr. Electron. Eng. 4, 12 (2009)

    Google Scholar 

  12. X. Long, J. He, J. Zhou, L. Fang, X. Zhou, F. Ren, T. Xu, Renew. Sustain. Energy Rev. 41, 29 (2015)

    Article  Google Scholar 

  13. J. Jiao, B. Wang, Third Int. Conf. Solid State Light. 5187, 234 (2004)

    Article  Google Scholar 

  14. G. Lu, S. Yang, Y. Huang, in Proceedings 2009 8th International Conference Reliability Maintainability Safety, ICRMS 2009, p. 1237 (2009)

  15. A. Hanss, E. Liu, M. Schmid, D. Muller, U. Karbowski, R. Derix, G. Elger, in Proceedings Electronic Components Technology Conference, p. 1136 (2017)

  16. T. Li, J. Zhang, H. Wang, Z. Hu, Y. Yu, A.C.S. Appl, Mater. Interfaces. 5, 8968 (2013)

    Article  CAS  Google Scholar 

  17. E.E. Kim, Y.N. Kononevich, Y.S. Dyuzhikova, D.S. Ionov, D.A. Khanin, G.G. Nikiforova, O.I. Shchegolikhina, V.G. Vasil’ev, A.M. Muzafarov, Polymers (Basel). 14 (2022)

  18. S. K. Groothuis, K. G. Heinen, L. Rimpillo, Annu. Proc. Reliab. Phys. 76 (1995)

  19. J. Hu, L. Yang, M. Whan Shin, Microelectron. J. 38, 157 (2007)

    Article  Google Scholar 

  20. D. Katsamberis, K. Browall, C. Iacovangelo, M. Neumann, H. Morgner, Prog. Org. Coat. 34, 130 (1997)

    Article  Google Scholar 

  21. T. Schmauder, K.D. Nauenburg, K. Kruse, G. Ickes, Thin Solid Films. 502, 270 (2006)

    Article  CAS  Google Scholar 

  22. H. Yang, C. Zou, X. Xu, M. Zang, S. Chen, Mater. Des. 219, 110835 (2022)

    Article  Google Scholar 

  23. M. Groenewolt, Polym. Int. 68, 843 (2019)

    Article  CAS  Google Scholar 

  24. X. Ma, K.M.B. Jansen, L.J. Ernst, W.D. van Driel, O. van der Sluis, G.Q. Zhang, Microelectron. Reliab. 47, 1685 (2007)

    Article  CAS  Google Scholar 

  25. C. Maggana, P. Pissis, J. Polym. Sci. Part B Polym. Phys. 37, 1165 (1999)

    Article  CAS  Google Scholar 

  26. C. Cazan, A. Enesca, L. Andronic, Polymers (Basel). 13, 1 (2021)

    Article  Google Scholar 

  27. Z. Zhang, S. Zhao, F. Hu, G. Yang, J. Li, H. Tian, N. Peng, Micromachines. 11, 177 (2020)

    Article  Google Scholar 

  28. N. Kinjo, M. Ogata, K. Nishi, A. Kaneda, Spec. Polym. Polym. Phys. 1 (2022)

  29. K. Kanaji, K. Mizuike, T. Nishiguchi, in Proceedings Electronic Technology Conference EPTC 215 (1997)

  30. H.I. Atsushi FUJII, Mototake ANDOH, Isao YAMAMOTO, IEEEYCPMT LnPl Electron, in Manufacturing Technology Symposium (1998)

  31. E.M. Yorkgitis, N.S. Eiss, C. Tran, G.L. Wilkes, J.E. McGrath, 79 (1985)

  32. Y. Nakamura, H. Tabata, H. Suzuki, K. Iko, M. Okubo, T. Matsumoto, J. Appl. Polym. Sci. 32, 4865 (1986)

    Article  CAS  Google Scholar 

  33. T.H. Ho, C.S. Wang, Eur. Polym. J. 37, 267 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Uno Minda Limited for their support and funding for characterization and analysis process. The authors are also thankful to the management team of Uno Minda Limited for every possible support and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol Tarachand Naikwadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikwadi, A.T., Chandkoti, I., Mali, M. et al. Failure Investigation on Delamination of Polydimethylsiloxane-Based Light-Emitting Diode Encapsulating Coating. J Fail. Anal. and Preven. 23, 2683–2692 (2023). https://doi.org/10.1007/s11668-023-01808-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01808-3

Keywords

Navigation