Skip to main content
Log in

Visualization of Delamination in Encapsulated Flexible Electronics Fabricated using Slot Die Coating

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A major challenge in the flexible electronics industry is the inability to quickly and accurately assess the mechanical properties of barrier materials used to encapsulate various devices. The feasibility of using a low-cost approach, digital photoelasticity (DP), to determine stress formation in barrier film is analyzed so that inherent weak areas cannot only be identified, but also reinforced. In this experimental study, ethylene vinyl acetate (EVA) is slot die coated onto untreated polyethylene terephthalate (PET) or onto PET treated with indium tin oxide (ITO) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). An axial stress is imposed on each sample using a universal test machine, and DP was used to obtain the stress and grab profiles. It has been shown that highly concentrated and multilayer EVA coatings withstand higher stress. Also, it has been shown that the locations of delamination happen at the side edge of the encapsulation when EVA was coated on a homogenous surface, but for heterogeneous surfaces, the delamination occurred at the boundary between the PEDOT:PSS and ITO. All these data were depicted using DP in very quick fashion. Therefore, DP is a viable method for quickly and accurately determining stress in barrier films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kale and T.J. Riley, IEEE Trans. Parts Hyb. Packag. 13, 3 (1977).

    Article  Google Scholar 

  2. W. Wong and A. Salleo, Flexible Electronics: Materials and Applications (Berlin: Springer, 2009), p. 16.

    Book  Google Scholar 

  3. M. Kempe, Sol. Energy Mater. Sol. Cell 94, 246 (2010).

    Article  CAS  Google Scholar 

  4. A.M. Henderson, IEEE Electr. Insul. Mag. 9, 30 (1993).

    Article  Google Scholar 

  5. M. Spalding and A. Chatterjee, Handbook of Industrial Polyethylene and Technology (Hoboken: Wiley, 2017), p. 126.

    Book  Google Scholar 

  6. N. Das, S. Yamazaki, T. Chaki, D. Khastgir, and A. Chakraborty, Polym. Int. 54, 256 (2005).

    Article  CAS  Google Scholar 

  7. R. Mizan and A. Islam, Univers. J. Mater. Sci. 6, 49 (2018).

    Google Scholar 

  8. W. Stark, M. Jaunich, W. Bohmeyer, and K. Lange, Polym. Test. 31, 904 (2012).

    Article  CAS  Google Scholar 

  9. T. Kinkeldei, N. Munzenrieder, C. Zysset, K. Cherenack, and G. Troster, IEEE Electr. Device Lett. 32, 1743 (2011).

    Article  CAS  Google Scholar 

  10. J. Lewis and M. Weaver, IEEE J. Sel. Top. Quant. 10, 45 (2004).

    Article  CAS  Google Scholar 

  11. A. Pierre, M. Sadeghi, M.M. Payne, A. Facchetti, J.E. Anthony, and A.C. Arias, Adv. Mater. 26, 5722 (2014).

    Article  CAS  Google Scholar 

  12. A. Sandstrom, H. Dam, F. Krebs, and L. Edman, Nat. Commun. 3, 1002 (2012).

    Article  Google Scholar 

  13. D. Perera, Prog. Org. Coat. 28, 21 (1996).

    Article  CAS  Google Scholar 

  14. S.T. Shiue, C.H. Yang, R.S. Chu, and T.J. Yang, Thin Solid Films 485, 169 (2005).

    Article  CAS  Google Scholar 

  15. O. van der Sluids, R.A.B. Engelen, P.H.M. Timmermans, and G.Q. Zhang, Microelectron. Reliab. 49, 853 (2009).

    Article  Google Scholar 

  16. D. Vella, J. Bico, A. Boudaoud, B. Roman, and P. Reid, Proc. Natl. Acad. Sci. USA 106, 10901 (2009).

    Article  CAS  Google Scholar 

  17. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, J. Appl. Crystallogr. 38, 1 (2005).

    Article  Google Scholar 

  18. K. Ramesh, Meas. Sci. Technol. 11, 12 (2000).

    Article  Google Scholar 

  19. R.G.R. Prasath, S. Danyluk, and S. Zagarola, Polym. Plast. Technol. Mater. 58, 1802 (2019).

    Article  CAS  Google Scholar 

  20. R.G.R. Prasath, T. Newton, and S. Danyluk, Manuf. Lett. 15, 9 (2018).

    Article  Google Scholar 

  21. R.G.R. Prasath, K. Skenes, and S. Danyluk, J. Electron. Mater. 42, 2478 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Defense NextFlex Technology Hub for funding this work, Dr. Steven Danyluk for giving insights on Digital Photoelasticity, and Christine Taylor for setting up and training us to use the digital photoelasticity system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tequila A. L. Harris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, TJ., Prasath, R.G.R., Sitaraman, S.K. et al. Visualization of Delamination in Encapsulated Flexible Electronics Fabricated using Slot Die Coating. J. Electron. Mater. 49, 3332–3339 (2020). https://doi.org/10.1007/s11664-020-08065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08065-2

Keywords

Navigation