Skip to main content
Log in

Influence of Various Defect Parameters on the Vibration Characteristics of a Single-Walled Carbon Nanotube

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Free vibration response of the single-walled carbon nanotubes (SWCNTs) is investigated using molecular dynamics simulation. Vibrational analysis is performed to study the effects of various defect parameters such as aspect ratio, chirality, presence of vacancy defects, numbers of defects and their position along the length of the SWCNT. The effects of these features on the natural vibration of SWCNTs are studied by determining the change in fundamental natural frequencies due to these features. Dynamics simulations are performed for cantilever boundary condition. Vibrational response obtained through molecular dynamic simulations indicates that shorter tubes offer higher vibrational sensitivity. Chirality effect is found to diminish with the increase in the length of tube. It is also found that the number of defects and their position along the tube affect greatly the natural frequency of the SWCNT. This study will provide invaluable input to the designers and users of carbon nanotube in the field of high-sensitive sensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  CAS  Google Scholar 

  2. M. Goel, S.P. Harsha, M.P. Mishra, R.K. Mishra, Buckling failure analysis of defective carbon nanotubes using molecular dynamics simulation. J. Fail. Anal. Prev. (2020). https://doi.org/10.1007/s11668-020-00886-x

    Article  Google Scholar 

  3. M. Goel, S.P. Harsha, S. Singh, A.K. Sahani, Analysis of temperature, helicity and size effect on the mechanical properties of carbon nanotubes using molecular dynamics simulation. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.130

    Article  Google Scholar 

  4. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  CAS  Google Scholar 

  5. Q. Zhao, Z.H. Gan, O.K. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis 14, 1609–1613 (2002)

    Article  CAS  Google Scholar 

  6. X.M.H. Huang, X.L. Feng, C.A. Zorman, M. Mehregany, M.L. Roukes, VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)

    Article  Google Scholar 

  7. K. Jensen, K. Kim, A. Zett, An atomic-resolution nano-mechanical mass sensor. Nat. Nanotechnol. 3, 533–537 (2008)

    Article  CAS  Google Scholar 

  8. Q. Wang, Atomic transportation via carbon nanotubes. Nano Lett. 9, 245 (2009)

    Article  CAS  Google Scholar 

  9. T. Thundat, P.I. Oden, R.J. Warmack, Microcantilever sensors. Microscale Thermophys. Eng. 1, 185–199 (1997)

    Article  CAS  Google Scholar 

  10. P. Hauptmann, R. Lucklum, A. Püttmer, B. Henning, Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sens. Actuat. A Phys. 67(1–3), 32–48 (1998)

    Article  CAS  Google Scholar 

  11. B. Ilic, D. Czaplewski, H.G. Craighead, Mechanical resonant immune specific biological detector. Appl. Phys. Lett. 77, 450 (2000)

    Article  CAS  Google Scholar 

  12. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Article  CAS  Google Scholar 

  13. Nickolay V. Lavrik, Panos G. Datskos, Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl. Phys. Lett. 82, 2697 (2003)

    Article  CAS  Google Scholar 

  14. B. Ilic, H.G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, Attogram detection using nano-electromechanical oscillators. J. Appl. Phys. 95, 3694–3703 (2004)

    Article  CAS  Google Scholar 

  15. A.Y. Joshi, S.C. Sharma, S.P. Harsha, Effect of chirality and atomic vacancies on dynamics of nano resonators based on SWCNT. Sens. Rev. 31(1), 47–57 (2011)

    Article  Google Scholar 

  16. A.Y. Joshi, S.C. Sharma, S.P. Harsha, The effect of pinhole defect on vibrational characteristics of single walled carbon nanotube. Phys. E: Low-Dimens. Syst. Nanostruct. 43(5), 1040–1045 (2011)

    Article  CAS  Google Scholar 

  17. A. Ghavamian, A. Ochsner, Numerical modeling of Eigen-modes and Eigen-frequencies of Singleand multi-walled carbon nanotubes under the influence of atomic defects. Comput. Mater. Sci. 72, 42–48 (2013)

    Article  CAS  Google Scholar 

  18. L.J. Chen, Q. Zhao, Z. Gong, The effects of different defects on vibration properties of single-walled carbon nanotubes. Adv. Mater. Res. 225–226, 1133–1136 (2011)

    Article  Google Scholar 

  19. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, The effect of atom vacancy defect on the vibrational behavior of single-walled carbon nanotubes. A structural mechanics approach. Adv. Mech. Eng. 6, 291645 (2014)

    Article  Google Scholar 

  20. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  CAS  Google Scholar 

  21. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  22. S. Noose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  23. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamics properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  CAS  Google Scholar 

  24. W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  25. R. Ansari, S. Ajori, B. Arash, Vibrations of single- and double-walled carbon nanotubes with layer-wise boundary conditions: a molecular dynamics study. Curr. Appl. Phys. 12, 707–711 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, M., Harsha, S.P., Mishra, M.P. et al. Influence of Various Defect Parameters on the Vibration Characteristics of a Single-Walled Carbon Nanotube. J Fail. Anal. and Preven. 20, 1229–1236 (2020). https://doi.org/10.1007/s11668-020-00929-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00929-3

Keywords

Navigation