Skip to main content
Log in

Effect of Geometrical Parameters and Hexa-Vacancy Defects on Vibration Characteristics of Bridged Carbon Nanotube

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Carbon nanotubes with bridged boundary conditions are widely used in the design of nano-sensors and oscillators. However, defects are inseparable from the carbon nanotubes which can affect its dynamics behavior and sensing performance. Influence of hexa-vacancy defect in terms of their numbers and migration along the length of the bridged single-walled carbon nanotube (SWCNT) is investigated through MD simulations. Moreover, effects of geometric parameters like length, diameter and chirality are studied for pristine SWCNT under bridged boundary condition. Effects of these aspects on free vibration response of SWCNT are studied through change in principal natural frequencies. It is observed that effect on the natural frequency get enhanced with increase in numbers of vacancy defect. Vibration characteristics of bridged SWCNT are less affected by the vacancy defect placed at mid-portion of the tube length. It is also found that shorter and thicker SWCNT offer higher vibrational sensitivity. Effect of chirality becomes less pronounced for longer tubes. The results of this study provide valuable input in the design of SWCNT-based nano-sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 345, 56–58 (1991)

    Article  Google Scholar 

  2. S.J. Papadakis, A.R. Hall, P.A. Williams, L. Vicci, M.R. Falvo, R. Superfine et al., Resonant oscillator with carbon nanotube torsion springs. Phys. Rev. Lett. 93, 146101–146104 (2004)

    Article  CAS  Google Scholar 

  3. Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis 14, 23 (2002)

    Google Scholar 

  4. W.D. Yang, X. Wang, C.Q. Fang, G. Lu, Electromechanical coupling characteristics of carbon nanotube reinforced cantilever nano-actuator. Sens. Actuat. A Phys. 220(1), 178–187 (2014)

    Article  CAS  Google Scholar 

  5. B. Arash, J.-W. Jiang, T. Rabczuk, A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl. Phys. Rev. 2(2), 021301 (2015)

    Article  Google Scholar 

  6. Q. Zheng, Q. Jiang, Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 045503 (2000)

    Article  Google Scholar 

  7. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. deHeer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Article  CAS  Google Scholar 

  8. C.Y. Li, T.W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  Google Scholar 

  9. C.Y. Li, T.W. Chou, Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 121–123 (2003)

    Article  Google Scholar 

  10. C.Y. Li, T.W. Chou, Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology 15, 1493–1496 (2004)

    Article  CAS  Google Scholar 

  11. P. Hauptmann, Resonant sensors and applications. Sens. Actuat. A Phys. 26, 371–377 (1991)

    Article  Google Scholar 

  12. R.F. Gibson, E.O. Ayorinde, Y.F. Wen, Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67(1), 1–28 (2007)

    Article  CAS  Google Scholar 

  13. H.B. Peng, C.W. Chang, S. Aloni, T.D. Yuzvinsky, A. Zettl, Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006)

    Article  CAS  Google Scholar 

  14. B. Lassagne, D. Garcia-Sanchez, A. Aguasc, Ultrasensitive mass sensing with a nanotube electro-mechanical resonator. Nano Lett. 8(11), 3735–3738 (2008)

    Article  CAS  Google Scholar 

  15. R. Mateiu, A. Kühle, R. Marie, A. Boisen, Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope. Ultramicroscopy 105(1), 233–237 (2005)

    Article  CAS  Google Scholar 

  16. J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  CAS  Google Scholar 

  17. C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)

    Article  Google Scholar 

  18. J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  19. A.Y. Joshi, S.C. Sharma, S.P. Harsha, Zeptogram scale mass sensing using single walled carbon nanotube based biosensors. Sens. Actuat. A Phys. 168(2), 275–280 (2011)

    Article  CAS  Google Scholar 

  20. G.X. Cao, X. Chen, J.W. Kysar, Strain sensing of carbon nanotubes: numerical analysis of the vibrational frequency of deformed sing-wall carbon nanotubes. Phys. Rev. B 72, 195412 (2005)

    Article  Google Scholar 

  21. N. Yao, V. Lordi, Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84, 1939–1943 (1998)

    Article  CAS  Google Scholar 

  22. Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Assessment of Timoshenko beam models for vibrational behaviour of single-walled carbon nanotubes using molecular dynamics. Adv. Appl. Math. Mech. 1(1), 89–106 (2009)

    Google Scholar 

  23. W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration ofcarbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  24. R. Ansari, S. Ajori, B. Arash, Vibrations of single- and double-walled carbon nanotubes with layer-wiseboundary conditions: a molecular dynamics study. Curr. Appl. Phys. 12, 707–711 (2012)

    Article  Google Scholar 

  25. T.W. Ebbesen, T. Takada, Topological and SP3 defect structures in nanotubes. Carbon 33(7), 973–978 (1995)

    Article  CAS  Google Scholar 

  26. A.Y. Joshi, S.C. Sharma, S.P. Harsha, Effect of chirality and atomic vacancies on dynamics of nanoresonators based on SWCNT. Sens. Rev. 31(1), 47–57 (2011)

    Article  Google Scholar 

  27. A.Y. Joshi, S.C. Sharma, S.P. Harsha, The effect of pinhole defect on vibrational characteristics of single walled carbon nanotube. Physica E 43(5), 1040–1045 (2011)

    Article  CAS  Google Scholar 

  28. A. Ghavamian, A. Ochsner, Numerical modeling of Eigen modes and Eigen frequencies of single and multi-walled carbon nanotubes under the influence of atomic defects. Comput. Mater. Sci. 72, 42–48 (2013)

    Article  CAS  Google Scholar 

  29. V. Parvaneh, M. Shariati, H. Torabi, Frequency analysis of perfect and defective SWCNTs. Comput. Mater. Sci. 50(7), 2051–2056 (2011)

    Article  CAS  Google Scholar 

  30. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, The effect of atom vacancy defect on the vibrational behavior of single-walled carbon nanotubes, in A Structural Mechanics Approach. Advances in Mechanical Engineering, Article ID 291645 (2014)

  31. A.A. Shariati, A.R. Golkarian, M. Jabbarzadeh, Investigation of vibrational behavior of perfect and defective carbon nanotubes using non-linear mass–spring model. J. Solid Mech. 6(3), 255–264 (2014)

    Google Scholar 

  32. L.J. Chen, Q. Zhao, Z. Gong, The effects of different defects on vibration properties of single- walled carbon nanotubes. Adv. Mater. Res. 225–226, 1133–1136 (2011)

    Article  Google Scholar 

  33. M. Goel, S.P. Harsha, M.P. Mishra, R.K. Mishra, Buckling failure analysis of defective carbon nanotubes using molecular dynamics simulation (Anal. Prev., J Fail, 2020). https://doi.org/10.1007/s11668-020-00886-x

    Book  Google Scholar 

  34. M. Goel, S.P. Harsha, S. Singh, A.K. Sahani, Analysis of temperature, helicity and size effect on the mechanical properties of carbon nanotubes using molecular dynamics simulation (Today Proc, Mater, 2020). https://doi.org/10.1016/j.matpr.2020.01.130

    Book  Google Scholar 

  35. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  CAS  Google Scholar 

  36. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  37. S. Noose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  38. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamica properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, M., Harsha, S.P., Mishra, M.P. et al. Effect of Geometrical Parameters and Hexa-Vacancy Defects on Vibration Characteristics of Bridged Carbon Nanotube. J Fail. Anal. and Preven. 20, 1875–1883 (2020). https://doi.org/10.1007/s11668-020-01001-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01001-w

Keywords

Navigation