Skip to main content
Log in

Analysis of a Directionally Solidified (DS) GTD-111 Turbine Blade Failure

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The purpose of this paper is to clarify the impact of pitting corrosion and erosion on the directionally solidified (DS) GTD-111 turbine blade behavior. Moreover, the pitting corrosion and oxidation phenomena engendered inside cooling channels of the turbine blade are utterly highlighted. Other features such as the η (Ni3, Ti) platelets nucleation, needle σ-phase precipitation at the interface NiPtAl/(DS) GTD-111 substrate are exhibited as well. Finally, the different microstructural changes in (NiPtAl) coating strata against hot corrosion, oxidation and interaction with (DS) GTD-111 substrate are revealed and argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Holländer, D. Kulawinski, A. Weidner, M. Thiele, H. Biermann, U. Gampe, Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades. Int. J. Fat. 92, 262–271 (2016)

    Article  Google Scholar 

  2. S.Y. Oakley, D. Nowell, Prediction of the combined high-and low-cycle fatigue performance of gas turbine blades after foreign object damage. Int. J. Fat. 29(1), 69–80 (2007)

    Article  Google Scholar 

  3. G. Marahleh, A.R.I. Kheder, H.F. Hamad, Creep-life prediction of service-exposed turbine blades. Mater. Sci. 42(4), 476 (2006)

    Article  CAS  Google Scholar 

  4. M. Kolbe, J. Murken, D. Pistolek, G. Eggeler, H.J. Klam, Direct assessment of the creep strength of DS cast turbine blades using miniature creep specimens. Mater. Werkst. 30(8), 465–472 (1999)

    Article  CAS  Google Scholar 

  5. V. Bonnand, D. Pacou, Complex thermo-mechanical approaches to study the behavior of high-temperature alloys. Aerospace Lab J. 12, 1–12 (2016)

    Google Scholar 

  6. J. Błachnio, W.I. Pawlak, Damageability of gas turbine blades–evaluation of exhaust gas temperature in front of the turbine using a non-linear observer (Adv. Gas Turb. Tech, Intech Open, 2011)

    Book  Google Scholar 

  7. R. Viswanathan, Damage mechanisms and life assessment of high temperature components. ASM international, 1989

  8. M. P. Boyce, Gas turbine engineering handbook. Elsevier, 2011

  9. Alstom GT11N2 Third Stage Blade Failure Analysis, EPRI, Palo Alto, CA: 2007. 1014814

  10. M. Arnal, C. Precht, T. Sprunk, T. Danninger, J. Stokes, Analysis of a virtual prototype first-stage rotor blade using integrated computer-based design tools. in ASME 8th Biennial Conf. on Eng. Syst. Des. and Anal., 2006. p. 215–224

  11. S. Kumari, D.V.V. Satyanarayana, M. Srinivas, Failure analysis of gas turbine rotor blades. Eng. Fail. Anal. 45, 234–244 (2014)

    Article  CAS  Google Scholar 

  12. W. Miglietti, J. Escudero, J. Lanza, I. Summerside, Z. Zainuddin, Repair process technology development and experience of frame 7FA + E, stage 1 turbine buckets. ASME 2011 Turbo Expo, 2011. p. 761–772

  13. R. Ghorbani, S. Asadikouhanjani, K. Kusterer, A. H. Ayed, Fracture analysis of a first stage turbine blade, ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010

  14. M.R. Reyhani, M. Alizadeh, A. Fathi, H. Khaledi, Turbine blade temperature calculation and life estimation-a sensitivity analysis. Prop. Power Res. 2(2), 148–161 (2013)

    Article  Google Scholar 

  15. M. J. van Enkhuizen, C. Dresbach, S. Reh, S. Kuntzagk, Efficient lifetime prediction of high pressure turbine blades in real life conditions. in ASME Turbo Expo 2017: Turbo. Tech. Conf. and Exp., 2017

  16. S. Amaral, T. Verstraete, R. Van den Braembussche, T. Arts, Design and optimization of the internal cooling channels of a high pressure turbine blade-part I: methodology. J. Turbo. 132(2), 021013 (2010)

    Article  Google Scholar 

  17. S. Amaral, T. Verstraete, R. Van den Braembussche, T. Arts, Design and optimization of the internal cooling channels of a high pressure turbine blade-part II: methodology. J. Turbo. 132(2), 021014 (2010)

    Article  Google Scholar 

  18. J.C. Han, S. Dutta, S. Ekkad, Gas turbine heat transfer and cooling technology (CRC press, Boca Raton 2012)

    Book  Google Scholar 

  19. T. Link, A. Rahmel, M. Schütze, The influence of gaseous impurities in air on the high temperature corrosion of coated and uncoated nickel-based superalloys. Mater. High Temp. 13(1), 55–66 (1995)

    Article  CAS  Google Scholar 

  20. M. D. Trexler, P. M. Singh, T. H. Sanders Jr, High temperature corrosion behavior of DS GTD-111 in oxidizing and sulfidizing environments. in Proc. of the 11th Inter. Symp. on Super., 2008

  21. H.M. Tawancy, L.M. Al-Hadhrami, Comparative performance of turbine blades used in power generation: damage vs. microstructure and superalloy composition selected for the application. Eng. Fail. Anal. 46, 76–91 (2014)

    Article  CAS  Google Scholar 

  22. N. S. Cheruvu, V. P. Swaminathan, C. D. Kinney, Recovery of microstructure and mechanical properties of service run GTD-111 DS buckets. in ASME Inter. Gas Turb. and Aero. Cong. and Exh., 1999

  23. V.S.K.G. Kelekanjeri, S.K. Sondhi, T. Vishwanath, F. Mastromatteo, B. Dasan, Coarsening kinetics of the bimodal γ′ distribution in DS GTD111TM superalloy. WIT Trans. Eng. Sci. 72, 251–262 (2011)

    Article  CAS  Google Scholar 

  24. A.S. Wilson, Formation and effect of topologically close-packed phases in nickel-base superalloys. Mater. Sci. and Tech. 33(9), 1108–1118 (2017)

    Article  CAS  Google Scholar 

  25. A. Dadkhah, A. Kermanpur, On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: microstructures and mechanical properties. Mater. Sci. Eng., A 685, 79–86 (2017)

    Article  CAS  Google Scholar 

  26. R.A. Kupkovits, R.W. Neu, Thermomechanical fatigue of a directionally-solidified Ni-base superalloy: smooth and cylindrically-notched specimens. Int. J. Fat. 32(8), 1330–1342 (2010)

    Article  CAS  Google Scholar 

  27. P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song, Tensile deformation mechanisms at various temperatures in a new directionally solidified Ni-base superalloy. J. Alloys Comp. 694, 502–509 (2017)

    Article  CAS  Google Scholar 

  28. J. Wang, L. Zhou, L. Sheng, J. Guo, The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Mater. Design 39, 55–62 (2012)

    Article  Google Scholar 

  29. B.G. Choi, I.S. Kim, D.H. Kim, S.M. Seo, C.Y. Jo, Eta phase formation during thermal exposure and its effect on mechanical properties in Ni-base superalloy GTD 111 (PA, Super. TMS Warr., 2004), pp. 163–171

    Google Scholar 

  30. D.K. Das, Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater Sci. 58, 151–182 (2013)

    Article  CAS  Google Scholar 

  31. B. Sudhangshu, High temperature coatings (Butterworth-Heinemann, Oxford, 2017)

    Google Scholar 

  32. M.Z. Alam, C. Parlikar, D. Chatterjee, D.K. Das, Comparative tensile behavior of freestanding γ-γ′ and β-(Ni, Pt) Al bond coats and effect on tensile properties of coated superalloy. Mater. Des. 114, 505–514 (2017)

    Article  CAS  Google Scholar 

  33. J. Angenete, K. Stiller, SEM and TEM studies of PtAl diffusion coatings under isothermal oxidation. Mater. High Temp. 17(2), 179–184 (2000)

    Article  CAS  Google Scholar 

  34. M. Göbel, A. Rahmel, M. Schötze, M. Schorr, W.T. Wu, Interdiffusion between the platinum-modified aluminide coating RT 22 and nickel-based single-crystal superalloys at 1000 and 1200° C. Mater. High Temp. 12(4), 301–309 (1994)

    Article  Google Scholar 

  35. S. Hayashi, B. Gleeson, Effects of Pt on the short-term oxidation behavior of γ-Ni + γ′-Ni3Al alloys. Mater. High Temp. 22(3-4), 321–328 (2005)

    Article  CAS  Google Scholar 

  36. J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, The effect of Pt content on γ–γ′ NiPtAl coatings. Surf. Coat. Tech. 203(5–7), 413–416 (2008)

    Article  CAS  Google Scholar 

  37. V. Maurel, V.A. Esin, P. Sallot, F. Gaslain, S. Gailliegue, L. Rémy, Rumpling of nickel aluminide coatings: a reassessment of respective influence of thermal grown oxide and phase transformations. Mater. High Temp. 33(4–5), 318–324 (2016)

    Article  CAS  Google Scholar 

  38. M.P. Bacos, J.M. Dorvaux, O. Lavigne, R. Mévrel, M. Poulain, C. Rio, M.H. Vidal-Setif, Performance and degradation mechanisms of thermal barrier coatings for turbine blades: a review of Onera activities. AerospaceLab 3, 1 (2011)

    Google Scholar 

  39. Z. Mazur, A. Luna-Ramírez, J. A. Juárez-Islas, Metallurgical assessment of degradation of a gas turbine bucket made of Inconel 738LC alloy after 24000 h in service. in ASME Power Conf., 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khier Sabri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabri, K., Gaceb, M. & Si-Chaib, M.O. Analysis of a Directionally Solidified (DS) GTD-111 Turbine Blade Failure. J Fail. Anal. and Preven. 20, 1162–1174 (2020). https://doi.org/10.1007/s11668-020-00920-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00920-y

Keywords

Navigation