Skip to main content

Advertisement

Log in

Fatigue Lifetime Prediction for Oil Tube Material Based on ABAQUS and FE-SAFE

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

A novel approach for the fatigue life prediction based on the combination of FE simulation using ABAQUS and fatigue analysis in FE-SAFE has been proposed in this paper. A phenomenological constitutive equation and an exponential ductile damage model were first developed using an iterative method to describe the whole deformation process including fracture of plate specimen prepared from N80 oil tube. In addition, fatigue tests for N80 specimen were conducted at a stress ratio R = 0.1 and at a loading frequency of 15 Hz, in which the maximum applied stress was chosen as 500, 540 and 600 MPa. The fatigue test data was further analyzed using Kolmogorov–Smirnov (K–S) tests, and results show that the logarithm fatigue life follows normal distribution. The SN curve for N80 oil tube materials was established based on the fatigue test results and statistical analysis. The results of stress distribution in N80 plate specimen from FE simulation and the experimentally determined SN curve were imported to FE-SAFE for the prediction of fatigue life. Good agreement has been achieved between the predicted fatigue life using the proposed approach and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.V. Bolotin, A unified approach to damage accumulation and fatigue crack growth. Eng. Fract. Mech. 22(3), 387–398 (1985)

    Article  Google Scholar 

  2. E. Santecchia, A.M.S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, S. Spigarelli, A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016, 1–26 (2016)

    Article  Google Scholar 

  3. A. Palmgren, Die Lebensdauer von Kugellargern. Zeitshrift Vereines Duetsher Ingenieure 68(4), 339 (1924)

    Google Scholar 

  4. M. Ma, Cumulative damage in fatigue. J. Appl. Mech. 12, A159–A164 (1945)

    Google Scholar 

  5. S.M. Marco, W.L. Starkey, A concept of fatigue damage. Trans Asme 76(4), 627–632 (1954)

    Google Scholar 

  6. S. Manson, J. Freche, C. Ensign, Application of a double linear damage rule to cumulative fatigue. Fatigue crack propagation (ASTM International, West Conshohocken, 1967)

    Google Scholar 

  7. S. Subramanyan, A cumulative damage rule based on the knee point of the SN curve. J. Eng. Mater. Technol. 98(4), 316–321 (1976)

    Article  Google Scholar 

  8. J. Chaboche, P. Lesne, A non-linear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 11(1), 1–17 (1988)

    Article  Google Scholar 

  9. Z. Peng, H.-Z. Huang, J. Zhou, Y.-F. Li, A new cumulative fatigue damage rule based on dynamic residual SN curve and material memory concept. Metals 8(6), 456 (2018)

    Article  Google Scholar 

  10. X. Wang, W. Zhang, T. Zhang, J. Gong, M. Abdel Wahab, A new empirical life prediction model for 9–12% Cr steels under low cycle fatigue and creep fatigue interaction loadings. Metals 9(2), 183 (2019)

    Article  CAS  Google Scholar 

  11. S. Manson, A complex subject-some simple approximations. Exp. Mech. 5(7), 193–226 (1965)

    Article  Google Scholar 

  12. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Mech. Eng. N. Y. 76, 931–950 (1954)

    CAS  Google Scholar 

  13. O.H. Basquin, The exponential law of endurance tests. Proc Am Soc Test Mater 10, 625–630 (1910)

    Google Scholar 

  14. A. Aeran, S.C. Siriwardane, O. Mikkelsen, I. Langen, A new nonlinear fatigue damage model based only on S–N curve parameters. Int. J. Fatigue 103, 327–341 (2017)

    Article  CAS  Google Scholar 

  15. K. Rege, D.G. Pavlou, A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue 98, 234–246 (2017)

    Article  Google Scholar 

  16. S.-P. Zhu, D. Liao, Q. Liu, J.A.F.O. Correia, A.M.P. De Jesus, Nonlinear fatigue damage accumulation: isodamage curve-based model and life prediction aspects. Int. J. Fatigue 128, 105185 (2019)

    Article  Google Scholar 

  17. M. Araghi, H. Rokhgireh, A. Nayebi, Evaluation of fatigue damage model of CDM by different proportional and non-proportional strain controlled loading paths. Theor. Appl. Fract. Mech. 98, 104–111 (2018)

    Article  CAS  Google Scholar 

  18. J. Huang, Q. Meng, Z. Zhan, W. Hu, F. Shen, Damage mechanics-based approach to studying effects of overload on fatigue life of notched specimens. Int. J. Damage Mech 28(4), 538–565 (2019)

    Article  Google Scholar 

  19. N. Liu, X. Cui, J. Xiao, J. Lua, N. Phan, A simplified continuum damage mechanics based modeling strategy for cumulative fatigue damage assessment of metallic bolted joints. Int. J. Fatigue 131, 105302 (2020)

    Article  Google Scholar 

  20. A.J. McEvily, A modified constitutive relation for fatigue crack growth, in Proceedings of the 7th International Fatigue Congress (Fatigue’99). Higher Education Press, pp. 329–336 (1999)

  21. A.J. McEvily, S. Ishihara, On the dependence of the rate of fatigue crack growth on the Σna (2a) parameter. Int. J. Fatigue 23(2), 115–120 (2001)

    Article  CAS  Google Scholar 

  22. F. Wang, W. Cui, Approximate method to determine the model parameters in a new crack growth rate model. Mar. Struct. 22(4), 744–757 (2009)

    Article  Google Scholar 

  23. F. Chen, F. Wang, W. Cui, Fatigue life prediction of engineering structures subjected to variable amplitude loading using the improved crack growth rate model. Fatigue Fract. Eng. Mater. Struct. 35(3), 278–290 (2012)

    Article  CAS  Google Scholar 

  24. E. Castillo, A. Fernández-Canteli, D. Siegele, Obtaining S–N curves from crack growth curves: an alternative to self-similarity. Int. J. Fract. 187(1), 159–172 (2014)

    Article  Google Scholar 

  25. J.A.F.O. Correia, S. Blasón, A. Arcari, M. Calvente, N. Apetre, P.M. Moreira, A.M. De Jesus, A.F. Canteli, Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure. Theor. Appl. Fract. Mech. 85, 26–36 (2016)

    Article  CAS  Google Scholar 

  26. J. Shi, D. Chopp, J. Lua, N. Sukumar, T. Belytschko, Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng. Fract. Mech. 77(14), 2840–2863 (2010)

    Article  Google Scholar 

  27. I.V. Singh, B.K. Mishra, S. Bhattacharya, R.U. Patil, The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 36(1), 109–119 (2012)

    Article  Google Scholar 

  28. H. Dirik, T. Yalçinkaya, Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. Int. J. Fatigue 114, 34–50 (2018)

    Article  Google Scholar 

  29. H. Li, J. Li, H. Yuan, A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor. Appl. Fract. Mech. 97, 236–249 (2018)

    Article  Google Scholar 

  30. X. Wan, Y. Shan, X. Liu, H. Wang, J. Wang, Simulation of Biaxial Wheel test and fatigue life estimation considering the influence of tire and wheel camber. Adv. Eng. Softw. 92, 57–64 (2016)

    Article  Google Scholar 

  31. M.M. Zakirnichnaya, I.M. Kulsharipov, Wedge gate valves selected during technological pipeline systems designing service life assessment. Procedia Eng. 206, 1831–1838 (2017)

    Article  CAS  Google Scholar 

  32. X. Hong, G. Xiao, W. Haoyu, L. Xing, W. Sixing, Fatigue damage analysis and life prediction of E-clip in railway fasteners based on ABAQUS and FE-SAFE. Adv. Mech. Eng. 10(3), 1687814018767249 (2018)

    Google Scholar 

  33. B. Saadouki, T. Sapanathan, P.H. Pelca, M. Elghorba, M. Rachik, Fatigue damage in fieldshapers used during electromagnetic forming and welding processes at high frequency impulse current. Int. J. Fatigue 109, 93–102 (2018)

    Article  CAS  Google Scholar 

  34. V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas, G. Gómez-Rosas, Influence of specimen thickness on the fatigue behavior of notched steel plates subjected to laser shock peening. Opt. Laser Technol. 101, 531–544 (2018)

    Article  CAS  Google Scholar 

  35. Y. Duan, J.A. Gonzalez, P.A. Kulkarni, W.W. Nagy, J.A. Griggs, Fatigue lifetime prediction of a reduced-diameter dental implant system: numerical and experimental study. Dent. Mater. 34(9), 1299–1309 (2018)

    Article  Google Scholar 

  36. H. Xiao, Y. Zhang, Q. Li, F. Jin, M.M. Nadakatti, Analysis of the initiation and propagation of fatigue cracks in the CRTS II slab track inter-layer using FE-SAFE and XFEM. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 233(7), 678–690 (2019)

    Article  Google Scholar 

  37. X.L. Zheng, B. Lü, H. Jiang, Determination of probability distribution of fatigue strength and expressions of P–S–N curves. Eng. Fract. Mech. 50(4), 483–491 (1995)

    Article  Google Scholar 

  38. P.C. Gope, Determination of sample size for estimation of fatigue life by using Weibull or log-normal distribution. Int. J. Fatigue 21(8), 745–752 (1999)

    Article  Google Scholar 

  39. H. Li, D. Wen, Z. Lu, Y. Wang, F. Deng, Identifying the probability distribution of fatigue life using the maximum entropy principle. Entropy 18(4), 111 (2016)

    Article  Google Scholar 

  40. S. Muhammad, P.-Y.B. Jar, Determining stress-strain relationship for necking in polymers based on macro deformation behavior. Finite Elem. Anal. Des. 70–71, 36–43 (2013)

    Article  Google Scholar 

  41. Y. Zhang, P.-Y.B. Jar, Phenomenological modelling of tensile fracture in PE pipe by considering damage evolution. Mater. Des. 77, 72–82 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from National Natural Science Foundation of China (11802343), China Postdoctoral Science Foundation (2018M630809), the Fundamental Research Funds for the Central Universities (18CX02174A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Zhu, J. et al. Fatigue Lifetime Prediction for Oil Tube Material Based on ABAQUS and FE-SAFE. J Fail. Anal. and Preven. 20, 936–943 (2020). https://doi.org/10.1007/s11668-020-00894-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00894-x

Keywords

Navigation