Skip to main content
Log in

New Physically Consistent Yield Model to Optimize Material Design for Functionally Graded Vessels

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The purpose of this research is to acquire an optimum design of FGMs for cylindrical and spherical vessels such that the whole material contributes to the load bearing. To do so, a reasonable yield strength profile for FGM is proposed and used in the material tailoring equation. In conjunction with equilibrium and compatibility equations as well as considering stress boundary conditions, a nonlinear ODE in terms of inclusion volume fraction is constituted and solved via applying initial conditions. For verification, a FE simulation made by ABAQUS software is performed that shows good agreement between the simulation and analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\( a,b \) :

Internal and external radii, respectively

\( P_{a} ,P_{b} \) :

Internal and external pressures, respectively

\( T_{a} ,T_{b} \) :

Internal and external temperatures, respectively

\( E \) :

Elastic modulus

\( V \) :

Poisson’s ratio

\( k \) :

Thermal conductivity

\( \alpha \) :

Coefficient of expansion

\( S_{\text{y}} \) :

Yield stress

A :

Coefficient of yield strength function

A :

Fraction coefficient of yield strength function

\( B \) :

Exponent of yield strength function

\( \zeta \) :

Volume fraction of inclusion phase

\( \zeta_{0} \) :

Volume fraction of inclusion phase at the inner radius

\( \sigma_{\text{r}} ,\sigma_{\theta } \) :

Radial and circumferential stresses, respectively

\( \varepsilon_{\text{r}} ,\varepsilon_{\theta } \) :

Radial and circumferential strains, respectively

References

  1. A.T. Function, Z. Yang, L. Zhang et al., Theoretical design of sedimentation applied to the fabrication of functionally graded materials. Metall. Mater. Trans. B [Internet]. 34, 605–609 (2003). https://doi.org/10.1007/s11663-003-0030-0

    Article  Google Scholar 

  2. T. Mahmoudi, A. Parvizi, E. Poursaeidi et al., Thermo-mechanical analysis of functionally graded wheel-mounted brake disk. J. Mech. Sci. Technol. 29, 4197–4204 (2015)

    Article  Google Scholar 

  3. M. Koizumi, Recent progress of functionally gradient materials in Japan. Ceram. Eng. Sci. Proc. 13, 333–347 (1992)

    CAS  Google Scholar 

  4. S. Alikarami, A. Parvizi, Elasto-plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading. Sci. Eng. Compos. Mater. 24, 609–620 (2017)

    Article  Google Scholar 

  5. M.A. Benatta, A. Kaci, A. Tounsi et al., Nonlinear bending analysis of functionally graded plates under pressure loads using a four variable refined plate theory. Int. J. Comput. Methods 11, 1350062 (2004). https://doi.org/10.1142/S021987621350062X

    Article  Google Scholar 

  6. T.H. Daouadji, A.H. Henni, A. Tounsi et al., A new hyperbolic shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 2012, 2489–2508 (2012)

    Google Scholar 

  7. M. Niino, K. Kisara, M. Mori, Feasibility study of FGM technology in space solar power systems (SSPS). Mater. Sci. Forum [Internet] 492, 163–170 (2005)

    Article  Google Scholar 

  8. H. Shah, A. Rahman, D. Choudhury et al., In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. J. Ceram. Soc. Jpn. 1214, 382–387 (2013)

    Google Scholar 

  9. A. Bandyopadhyay, B.V. Krishna, W. Xue et al., Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. Mater. Med. 20, 29 (2009)

    Article  Google Scholar 

  10. S. Hosseini-Hashemi, I. Nahas, M. Fakher et al., Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)

    Article  Google Scholar 

  11. O. Carvalho, M. Buciumeanu, S. Madeira et al., Optimization of AlSi-CNTs functionally graded material composites for engine piston rings. Mater. Des. 80, 163–173 (2015)

    Article  CAS  Google Scholar 

  12. A.W. Leissa, M. Vagins, The design of orthotropic materials for stress optimization. Int. J. Solids Struct. 14, 517–526 (1978)

    Article  Google Scholar 

  13. M. Sadeghian, H.E. Toussi, Solutions to the problem of thermo-mechanical yielding in functionally graded material cylindrical vessels. J. Reinf. Plast. Compos. 32, 1624–1633 (2013)

    Article  CAS  Google Scholar 

  14. M. Sun, M.W. Hyer, Use of material tailoring to improve buckling capacity of elliptical composite cylinders. AIAA J. 46, 770–782 (2008)

    Article  Google Scholar 

  15. J.R. Cho, J.H. Choi, A yield-criteria tailoring of the volume fraction in metal-ceramic functionally graded material. Eur. J. Mech. A/Solids. 23, 271–281 (2004)

    Article  Google Scholar 

  16. B.M. Love, R.C. Batra, Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic constituents. Int. J. Plast 22, 1026–1061 (2006)

    Article  Google Scholar 

  17. F.N. Dehnavi, A. Parvizi, Investigation of thermo-elasto-plastic behavior of thick-walled spherical vessels with inner functionally graded coatings. Meccanica [Internet]. 52, 2421–2438 (2017)

    Article  Google Scholar 

  18. D. Leutz, T. Wallmersperger, Thermo-mechanical behavior of functionally graded materials: modeling, simulation and error estimation. Mech. Adv. Mater. Struct. 18, 32–52 (2011)

    Article  Google Scholar 

  19. Z. Mazarei, M.Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials. Int. J. Appl. Mech. 8, 1–25 (2016)

    Article  Google Scholar 

  20. M.R. Eslami, M.H. Babaei, R. Poultangari, Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessel. Pip. [Internet] 82, 522–527 (2005)

    Article  Google Scholar 

  21. Y. Tanigawa, M. Matsumoto, T. Akai, Optimization problem of material composition for nonhomogeneous plate to minimize thermal stresses when subjected to unsteady heat supply. Trans. Jpn Soc. Mech. Eng. Ser. A. 62, 115–122 (1996)

    Article  Google Scholar 

  22. K.S.S. Ravichandran, Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng. A 201, 269–276 (1995)

    Article  Google Scholar 

  23. B. Agarwal, P.C. Upadhyay, L. Banta et al., Transient temperature distribution in composites with layers of Functionally Graded Materials (FGMs). J. Reinf. Plast. Compos. 25, 513–542 (2006)

    Article  CAS  Google Scholar 

  24. A. Parvizi, R. Naghdabadi, J. Arghavani, Analysis of Al A359/SiCp functionally graded cylinder subjected to internal pressure and temperature gradient with elastic-plastic deformation. J. Therm. Stress. [Internet] 34, 1054–1070 (2011). https://doi.org/10.1080/01495739.2011.605934

    Article  Google Scholar 

  25. A. Parvizi, S. Alikarami, M. Asgari, Exact solution for thermoelastoplastic behavior of thick-walled functionally graded sphere under combined pressure and temperature gradient loading. J Therm Stress 39, 1152–1170 (2016). https://doi.org/10.1080/01495739.2016.1188614

    Article  Google Scholar 

  26. F. Nosouhi Dehnavi, A. Parvizi, K. Abrinia, Novel material tailoring method for internally pressurized FG spherical and cylindrical vessels. Acta Mech. Sin. Xuebao. 34, 936–948 (2018)

    Article  CAS  Google Scholar 

  27. G.J. Nie, R.C. Batra, Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders. Compos. Struct. 92, 265–274 (2010)

    Article  Google Scholar 

  28. H.M. Xu, X.F. Yao, X.Q. Feng et al., Anti-plane Yoffe moving crack problem in isotropic functionally graded materials. J. Reinf. Plast. Compos. 26, 127–137 (2007)

    Article  CAS  Google Scholar 

  29. A. Alibeigloo, Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method. Mech. Adv. Mater. Struct. 25, 766–784 (2018)

    Article  Google Scholar 

  30. Z. Yang, M. Liu, C. Deng et al., Thermal stress analysis of W/Cu functionally graded materials by using finite element method. J. Phys: Conf. Ser. 419, 012051 (2013)

    Google Scholar 

  31. C.F. Deng, Y.X. Ma, P. Zhang et al., Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett. 62, 2301–2303 (2008)

    Article  CAS  Google Scholar 

  32. J.M. Molina, J. Narciso, L. Weber et al., Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution. Mater. Sci. Eng. A 480, 483–488 (2008)

    Article  Google Scholar 

  33. Z. Li, R.C. Bradt, Thermal expansion of the cubic (3C) polytype of SiC. J. Mater. Sci. 21, 4366–4368 (1986)

    Article  CAS  Google Scholar 

  34. G.A. Slack, Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35, 3460–3466 (1964)

    Article  CAS  Google Scholar 

  35. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  36. Z.-Q. Cheng, R.C. Batra, Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. Part B Eng. 31, 97–106 (2000)

    Article  Google Scholar 

  37. J.N. Reddy, Z.Q. Cheng, Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A/Solids. 20, 841–855 (2001)

    Article  Google Scholar 

  38. R. Rodríguez-Castro, R.C. Wetherhold, M.H. Kelestemur, Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite. Mater. Sci. Eng. A 323, 445–456 (2002)

    Article  Google Scholar 

  39. D. Dumont, A. Deschamps, Y. Brechet, A model for predicting fracture mode and toughness in 7000 series aluminium alloys. Acta Mater. 52, 2529–2540 (2004)

    Article  CAS  Google Scholar 

  40. R.G. Munro, Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 26, 1195–1203 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Akbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.S., Akbari, A. & Parvizi, A. New Physically Consistent Yield Model to Optimize Material Design for Functionally Graded Vessels. J Fail. Anal. and Preven. 20, 470–482 (2020). https://doi.org/10.1007/s11668-020-00844-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00844-7

Keywords

Navigation