Skip to main content
Log in

Comparative Analysis of Microstructural and Mechanical Attributes in Low-Pressure Cold-Spray Coatings: Impact of Varied Cu Feedstock Powders

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, the role of feedstock powder in influencing the characteristics of cold spray deposition is explored. Four distinct types of Cu feedstock powders, derived through electrolysis and employing varied gas atomization methods, are applied to a Cu substrate via low-pressure cold spray coating. We investigated the impact of feedstock powder on the resultant coatings' microstructure and mechanical properties. A comprehensive statistical model is developed, considering the cold spray parameters, weight change, coating thickness, and discerning their significance and interactions. Optimal conditions for carrier gas temperature and pressure are identified at approximately 400 °C and 1.99 MPa, respectively, consistent across all Cu powders. Velocity analysis reveals particle velocities ranging from 373 to 564 m/s under these optimal conditions. Coatings deposited using satellite-free gas-atomized powder, characterized by enhanced sphericity, exhibit superior characteristics, including minimal porosity (0.66 ± 0.35%), high flattening ratio (3.57 ± 1.51), elevated microhardness (107 ± 3 HV) and high bonding strength (20.7 ± 2.3 MPa). In contrast, coatings deposited with gas-atomized powder featuring microsatellite particles and electrolytic powder with irregular shapes display distinct properties. The observed trends are attributed to lower oxygen content and reduced oxide levels near the surface of the more spherical, satellite-free powder. This powder also demonstrates heightened plastic deformation during deposition. The increased peening effect of satellite-free gas-atomized powder during cold spray results in elevated dynamic recrystallization near the substrate surface, leading to smaller grains at the interface. Microstructural evolution analysis, utilizing electron backscatter diffraction, further elucidates the heterogeneous deformation and grain refinement occurring in Cu splats during cold spray coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, J. Therm. Spray Technol., 2008, 17(4), p 495-516.

    Article  Google Scholar 

  2. V. Kenneth and C. Jr, “Practical Cold Spray,” Practical Cold Spray, 2021.

  3. M.C. Spray, “Modern Cold Spray,” Modern Cold Spray, 2015.

  4. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232.

    Article  Google Scholar 

  5. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650. https://doi.org/10.1016/j.addma.2018.04.017

    Article  CAS  Google Scholar 

  6. R.F. Váz, A. Silvello, P.D. Cavalière, S. Dosta, I.G. Cano, L. Capodieci, A. Rizzo, and D. Valerini, Fretting Wear and Scratch Resistance of Cold-Sprayed Pure Cu and Ti, Metallogr. Microstruct. Anal., 2021, 10(4), p 496-513. https://doi.org/10.1007/s13632-021-00758-2

    Article  Google Scholar 

  7. S. Pathak and G.C. Saha, Development of Sustainable Cold Spray Coatings and 3D Additive Manufacturing Components for Repair/Manufacturing Applications: A Critical Review, Coatings, 2017, 7(8), p 122.

    Article  Google Scholar 

  8. E. Irissou, D. Poirier, P. Vo, C.V. Cojocaru, M. Aghasibeig, and S. Yue, How to Unleash the Remarkable Potential of Cold Spray: A Perspective, J. Therm. Spray Technol., 2022 https://doi.org/10.1007/s11666-022-01363-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V Cold Spray Depositions, Surf. Coat. Technol., 2018, 335, p 1-12. https://doi.org/10.1016/j.surfcoat.2017.12.014

    Article  CAS  Google Scholar 

  10. H. Hajipour, A. Abdollah-zadeh, H. Assadi, E. Taheri-Nassaj, and H. Jahed, Effect of Feedstock Powder Morphology on Cold-Sprayed Titanium Dioxide Coatings, J. Therm. Spray Technol., 2018, 27(8), p 1542-1550. https://doi.org/10.1007/s11666-018-0782-3

    Article  CAS  Google Scholar 

  11. H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, J. Therm. Spray Technol., 2012, 21(5), p 1065-1075.

    Article  CAS  Google Scholar 

  12. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.G. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1140-1153.

    Article  CAS  Google Scholar 

  13. J. Tang, Z. Zhao, N. Li, X. Qiu, Y. Shen, X. Cui, H. Du, J. Wang, and T. Xiong, Influence of Feedstock Powder on Microstructure and Mechanical Properties of Ta Cold Spray Depositions, Surf. Coat. Technol., 2019, 377, p 124903. https://doi.org/10.1016/j.surfcoat.2019.124903

    Article  CAS  Google Scholar 

  14. V.N.V. Munagala, V. Akinyi, P. Vo, and R.R. Chromik, Influence of Powder Morphology and Microstructure on the Cold Spray and Mechanical Properties of Ti6Al4V Coatings, J. Therm. Spray Technol., 2018, 27(5), p 827-842. https://doi.org/10.1007/s11666-018-0729-8

    Article  CAS  Google Scholar 

  15. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379.

    Article  CAS  Google Scholar 

  16. M. Walker, Microstructure and Bonding Mechanisms in Cold Spray Coatings, Mater. Sci. Technol., 2018, 34(17), p 2057-2077. https://doi.org/10.1080/02670836.2018.1475444

    Article  CAS  Google Scholar 

  17. J.T. Liang, S.F. Chang, C.H. Wu, S.H. Chen, C.W. Tsai, K.C. Cheng, and K. Hsu, Influence of Feedstock in the Formation Mechanism of Cold-Sprayed Copper Coatings, Coatings, 2023, 13(6), p 1065.

    Article  CAS  Google Scholar 

  18. F.J. Wei, B.Y. Chou, K.Z. Fung, and S.Y. Tsai, Thermomechanical Properties of Cold-Sprayed Copper Coatings from Differently Fabricated Powders, Surf. Coat. Technol., 2022, 434, p 128128. https://doi.org/10.1016/j.surfcoat.2022.128128

    Article  CAS  Google Scholar 

  19. D. Poirier, J.G. Legoux, P. Vo, B. Blais, J.D. Giallonardo, and P.G. Keech, Powder Development and Qualification for High-Performance Cold Spray Copper Coatings on Steel Substrates, J. Therm. Spray Technol., 2019, 28(3), p 444-459. https://doi.org/10.1007/s11666-019-00833-9

    Article  CAS  Google Scholar 

  20. H. Koivuluoto and P. Vuoristo, Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu+Al2O3 Coatings Prepared by Using Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19(5), p 1081-1092.

    Article  CAS  Google Scholar 

  21. Y.J. Li, X.T. Luo, H. Rashid, and C.J. Li, A New Approach to Prepare Fully Dense Cu with High Conductivities and Anti-Corrosion Performance by Cold Spray, J. Alloys Compd., 2018, 740, p 406-413. https://doi.org/10.1016/j.jallcom.2017.11.053

    Article  CAS  Google Scholar 

  22. T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960.

    Article  CAS  Google Scholar 

  23. P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2007, 16(3), p 425-434.

    Article  Google Scholar 

  24. T. Kairet, M. Degrez, F. Campana, and J.P. Janssen, Influence of the Powder Size Distribution on the Microstructure of Cold-Sprayed Copper Coatings Studied by x-Ray Diffraction, J. Therm. Spray Technol., 2007, 16(5-6), p 610-618.

    Article  CAS  Google Scholar 

  25. C.H. Ng, S. Yin, R. Lupoi, and J. Nicholls, Correlation between Flattening Ratio and Wear Performance of Cold Sprayed Metal Matrix Composite Coatings, Mater. Lett., 2021, 283, p 128773. https://doi.org/10.1016/j.matlet.2020.128773

    Article  CAS  Google Scholar 

  26. M. Michalak, L. Łatka, P. Szymczyk, and P. Sokołowski, Computational Image Analysis of Suspension Plasma Sprayed YSZ Coatings, ITM Web Conf., 2017, 15, p 06004.

    Article  Google Scholar 

  27. ASTM E112, Standard Test Methods for Determining Average Grain Size E112-13, Astm E112-10, 2010, 96(2004), p 1-27.

  28. ASTM, Standard Test Method for Microindentation Hardness of MaterialsKnoop and Vickers Hardness of Materials 1, Annu. B. ASTM Stand., 2010, i, p 1-42.

  29. S.T. Method, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings 1, Current, 2008, 2001(03), p 1-7.

    Google Scholar 

  30. N. Eftekhari, D. Saha, and H. Jahed, A Study on the Powder Manufacturing Effect on Flowability and Deformability of Pure Cu Powders in Cold Spray Application, ITSC 2023, F. Azarmi, Ed., May 22-25, 2023 (Québec City, Canada), ASM International, 2023.

  31. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454.

    Article  CAS  Google Scholar 

  32. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176.

    Article  CAS  Google Scholar 

  33. O.C. Ozdemir, C.A. Widener, D. Helfritch, and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Technol., 2016, 25(4), p 660-671.

    Article  Google Scholar 

  34. B. Marzbanrad, E. Toyserkani, and H. Jahed, Characterization of Single- and Multilayer Cold-Spray Coating of Zn on AZ31B, Surf. Coat. Technol., 2021, 416, p 127155. https://doi.org/10.1016/j.surfcoat.2021.127155

    Article  CAS  Google Scholar 

  35. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394.

    Article  CAS  Google Scholar 

  36. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808.

    Article  Google Scholar 

  37. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742.

    Article  CAS  Google Scholar 

  38. M. Reza Rokni, S.R. Nutt, C.A. Widener, G.A. Crawford, and V.K. Champagne, Structure-Properties Relations in High-Pressure Cold-Sprayed Deposits, Cold-Spray Coatings: Recent Trends and Future perspectives, 2017

  39. S.Y. Chang and T.K. Chang, Grain Size Effect on Nanomechanical Properties and Deformation Behavior of Copper under Nanoindentation Test, J. Appl. Phys., 2007, 101(3), p 033507.

    Article  Google Scholar 

  40. X.T. Luo, Y.J. Li, and C.J. Li, A Comparison of Cold Spray Deposition Behavior between Gas Atomized and Dendritic Porous Electrolytic Ni Powders under the Same Spray Conditions, Mater. Lett., 2016, 163, p 58-60. https://doi.org/10.1016/j.matlet.2015.10.048

    Article  CAS  Google Scholar 

  41. Y.J. Li, X.T. Luo, and C.J. Li, Dependency of Deposition Behavior, Microstructure and Properties of Cold Sprayed Cu on Morphology and Porosity of the Powder, Surf. Coat. Technol., 2017, 328, p 304-312. https://doi.org/10.1016/j.surfcoat.2017.08.070

    Article  CAS  Google Scholar 

  42. C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 95-101.

    Article  CAS  Google Scholar 

  43. W.Y. Li, C.J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958. https://doi.org/10.1016/j.apsusc.2010.03.008

    Article  CAS  Google Scholar 

  44. M. Razavipour, S. Rahmati, A. Zúñiga, D. Criado, and B. Jodoin, Bonding Mechanisms in Cold Spray: Influence of Surface Oxidation During Powder Storage, J. Therm. Spray Technol., 2021, 30(1-2), p 304-323.

    Article  CAS  Google Scholar 

  45. S. Yin, P. He, H. Liao, and X. Wang, Deposition Features of Ti Coating Using Irregular Powders in Cold Spray, J. Therm. Spray Technol., 2014, 23(6), p 984-990.

    Article  CAS  Google Scholar 

  46. X.T. Luo, C.X. Li, F.L. Shang, G.J. Yang, Y.Y. Wang, and C.J. Li, High Velocity Impact Induced Microstructure Evolution during Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20. https://doi.org/10.1016/j.surfcoat.2014.06.006

    Article  CAS  Google Scholar 

  47. G. Sarriegui, J.M. Martín, N. Burgos, M. Ipatov, A.P. Zhukov, and J. Gonzalez, Effect of Particle Size on Grain Growth of Nd-Fe-B Powders Produced by Gas Atomization, Mater. Charact., 2022, 187, p 111824. https://doi.org/10.1016/j.matchar.2022.111824

    Article  CAS  Google Scholar 

  48. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688.

    Article  CAS  Google Scholar 

  49. N.H. Tariq, L. Gyansah, J.Q. Wang, X. Qiu, B. Feng, M.T. Siddique, and T.Y. Xiong, Cold Spray Additive Manufacturing: A Viable Strategy to Fabricate Thick B4C/Al Composite Coatings for Neutron Shielding Applications, Surf. Coat. Technol., 2018, 339, p 224-236. https://doi.org/10.1016/j.surfcoat.2018.02.007

    Article  CAS  Google Scholar 

  50. J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, and K.A. Lee, Manufacture and Properties of Cold Spray Deposited Large Thickness Cu Coating Material for Sputtering Target, Met. Mater. Int., 2011, 17(1), p 157-166.

    Article  CAS  Google Scholar 

  51. Y. Zou, W. Qin, E. Irissou, J.G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scr. Mater., 2009, 61(9), p 899-902.

    Article  CAS  Google Scholar 

  52. Z. Liu, H. Wang, M.J.R. Haché, X. Chu, E. Irissou, and Y. Zou, Prediction of Heterogeneous Microstructural Evolution in Cold Sprayed Copper Coatings Using Local Zener-Hollomon Parameter and Strain, Acta Mater., 2020, 193, p 191-201.

    Article  CAS  Google Scholar 

  53. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13-28.

    Article  CAS  Google Scholar 

  54. V.K. Champagne, D.J. Helfritch, M.D. Trexler, and B.M. Gabriel, The Effect of Cold Spray Impact Velocity on Deposit Hardness, Model. Simul. Mater. Sci. Eng., 2010, 18(6), p 065011.

    Article  Google Scholar 

  55. Y. Xiong and M.X. Zhang, The Effect of Cold Sprayed Coatings on the Mechanical Properties of AZ91D Magnesium Alloys, Surf. Coat. Technol., 2014, 253, p 89-95. https://doi.org/10.1016/j.surfcoat.2014.05.018

    Article  CAS  Google Scholar 

  56. R. Kirchheim, Metals as Sinks and Barriers for Interstitial Diffusion with Examples for Oxygen Diffusion in Copper Niobium and Tantalum, Acta Metall., 1979, 27(5), p 869-878.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) under-RGPIN-2020-05135 grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloofar Eftekhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2023 International Thermal Spray Conference, held May 22–25, 2023, in Québec City, Canada, and has been expanded from the original presentation. The issue was organized by Giovanni Bolelli, University of Modena and Reggio Emilia (Lead Editor); Emine Bakan, Forschungszentrum Jülich GmbH; Partha Pratim Bandyopadhyay, Indian Institute of Technology, Karaghpur; Šárka Houdková, University of West Bohemia; Yuji Ichikawa, Tohoku University; Heli Koivuluoto, Tampere University; Yuk-Chiu Lau, General Electric Power (Retired); Hua Li, Ningbo Institute of Materials Technology and Engineering, CAS; Dheepa Srinivasan, Pratt & Whitney; and Filofteia-Laura Toma, Fraunhofer Institute for Material and Beam Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, N., Jahed, H. Comparative Analysis of Microstructural and Mechanical Attributes in Low-Pressure Cold-Spray Coatings: Impact of Varied Cu Feedstock Powders. J Therm Spray Tech 33, 629–651 (2024). https://doi.org/10.1007/s11666-024-01762-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01762-y

Keywords

Navigation