Skip to main content
Log in

Thick Cu-hBN Coatings Using Pulsed Gas Dynamic Spray Process: Coating Formation Analysis and Characterization

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Abradable coatings are mostly sprayed using melting-associated thermal spray methods, which come with some drawbacks limiting their usage. While the manufacturing of these coatings using cold spray (CS) can potentially offer considerable advantages, there has been limited successes in depositing such coatings using this techniqe. In this study, the deposition mechanisms of Cu-hBN mixtures used as an abradable material model were studied using the pulsed gas dynamic spray process (PGDS). Coating microstructure analysis using electron channeling contrast imaging method, Raman spectroscopy, microhardness and fracture surface analyses were performed. Three sets of coatings were sprayed with 0, 9.8 and 18.6 vol.% hBN and balanced Cu powder mixtures. Averages of approximately 9 and 16 vol.% hBN phase was retained in the deposited coatings with a fine distribution of hBN at particle boundaries while deposition of these powder mixtures was unsuccessful using CS (using similar spray parameters and slightly lower pressure). It has been found that the higher temperature of particles in the PGDS as well as the “powder packets” structure typical of PGDS is due to the pulsatile nature facilitate coating deposition while an increase in the hBN phase significantly decreases the process DE. Vortex-like structures were observed in the coatings with high hBN phase content and attributed to the nature of the solid lubricant phase and decreased DE. It was shown that the hBN phase was trapped either at the inter-branching space of the dendritic feedstock powder Cu particles (demonstrating the importance of the feedstock powder selection) or at inter-particle boundaries due to the shock-induced acceleration of packets of particles, revealing the role of the process physics in the deposition of this material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Zhang and M. Marshall, Investigating Material Removal Mechanism of Al-Si Base Abradable Coating in labyrinth Seal System, Wear, 2019, 426–427, p 239–249. https://doi.org/10.1016/j.wear.2019.01.034

    Article  CAS  Google Scholar 

  2. Z. Wang, L. Du, H. Lan, C. Huang and W. Zhang, A Novel Technology of Sol Precursor Plasma Spraying to Obtain the Ceramic Matrix abradable Sealing Coating, Mater. Lett., 2019, 253, p 226–229. https://doi.org/10.1016/j.matlet.2019.05.079

    Article  CAS  Google Scholar 

  3. L. Schuster, Abradable Composition and seal of An axial-Flow Turbomachine Compressor Casing, Google Patents, 2018.

  4. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada and H. Nishikawa, Boron Nitride as a Lubricant Additive, Wear, 1999, 232, p 199–206. https://doi.org/10.1016/S0043-1648(99)00146-5

    Article  CAS  Google Scholar 

  5. H.I. Faraoun, T. Grosdidier, J.L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick and N. Hopkins, Improvement of Thermally sprayed Abradable Coating by Microstructure Control, Surf. Coat. Technol., 2006, 201, p 2303–2312. https://doi.org/10.1016/j.surfcoat.2006.03.047

    Article  CAS  Google Scholar 

  6. S. Martawirya, R.D. Ramdan, B. Prawara, E. Martides, R. Wirawan, B. Widyanto, R. Suratman and I. Pratiwi, Mechanical Properties, Microstructure and Wear characteristic of Abradable Material Coated by HVOF with Variation Of Surface Treatment and Spray Distance, AIP Conf. Proc., 2020, 2262, p 060010. https://doi.org/10.1063/5.0017744

    Article  CAS  Google Scholar 

  7. J. Ziegelheim, L. Lombardi, Z. Cesanek, S. Houdkova, J. Schubert, D. Jech, L. Celko and Z. Pala, Abradable Coatings for Small Turboprop Engines: A Case Study of Nickel-Graphite Coating, J. Therm. Spray Technol., 2019, 28, p 794–802. https://doi.org/10.1007/s11666-019-00838-4

    Article  CAS  Google Scholar 

  8. J. Liu, Y. Yu, T. Liu, X. Cheng, J. Shen and C. Li, The Influence of Composition and Microstructure on the Abradability of Aluminum-Based Abradable Coatings, J. Therm. Spray Technol., 2017, 26, p 1095–1103. https://doi.org/10.1007/s11666-017-0526-9

    Article  CAS  Google Scholar 

  9. S. Goergen, Cracking Behaviour, Failure Modes and Lifetime Analysis of M320 Abradable Compressor Seal Coating, Cranfield University, 2012.

  10. E. Irissou, A. Dadouche and R.S. Lima, Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings, J. Therm. Spray Technol., 2013, 23, p 252–261. https://doi.org/10.1007/s11666-013-9998-4

    Article  CAS  Google Scholar 

  11. Y.D. Liu, J.P. Zhang, Z.L. Pei, J.H. Liu, W.H. Li, J. Gong and C. Sun, Investigation on High-Speed Rubbing Behavior Between Abrasive Coatings and Al/hBN Abradable Seal Coatings, Wear, 2020, 456–457, p 203389. https://doi.org/10.1016/j.wear.2020.203389

    Article  CAS  Google Scholar 

  12. G.P. Wagner, D.B. Allen, B.B. Seth, Abradable Coating Applied with Cold Spray Technique, Google Patents, 2002.

  13. K.J.-P. Bridges, Degradation Mechanisms in Ceramic Abradable Coatings for Hot Section Turbine Components, University of California, Irvine, 2018.

    Google Scholar 

  14. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov and V. Fomin, Chapter 5 - Current status of the cold spray process, Cold Spray Technology. Elsevier, Oxford, 2007, p 248–323

    Chapter  Google Scholar 

  15. R. McCune, A. Papyrin, J. Hall, W. Riggs and P. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, ASM International, Materials Park, OH United States, 1995.

    Google Scholar 

  16. R. Nikbakht, S.H. Seyedein, S. Kheirandish, H. Assadi and B. Jodoin, Asymmetrical Bonding in Cold Spraying of Dissimilar Materials, Appl. Surf. Sci., 2018, 444, p 621–632. https://doi.org/10.1016/j.apsusc.2018.03.103

    Article  CAS  Google Scholar 

  17. R. Nikbakht, S.H. Seyedein, S. Kheirandish, H. Assadi and B. Jodoin, The Role of Deposition Sequence in Cold Spraying of Dissimilar Materials, Surf. Coat. Technol., 2019, 367, p 75–85. https://doi.org/10.1016/j.surfcoat.2019.03.065

    Article  CAS  Google Scholar 

  18. R. Nikhbakht, M. Saadati, M. Jahazi, H. Assadi, and B. Jodoin, EBSD Analysis Enhancement of Cold Sprayed Composite Materials: Sample Preparation, Annealing, and Scan Optimization, Microscopical Society Symposium of Canada, Université de Sherbrooke, Québec, Canada, (2020).

  19. R. Nikbakht, H. Assadi and B. Jodoin, Intermetallic Phase Evolution of Cold-Sprayed Ni-Ti Composite Coatings: Influence of As-Sprayed Chemical Composition, J. Therm. Spray Technol., 2021, 30, p 119–130. https://doi.org/10.1007/s11666-020-01112-8

    Article  CAS  Google Scholar 

  20. R. Nikbakht, M. Saadati, H. Assadi, K. Jahani and B. Jodoin, Dynamic Microstructure Evolution in Cold Sprayed NiTi Composite Coatings, Surf. Coat. Technol., 2021, 421, p 127456. https://doi.org/10.1016/j.surfcoat.2021.127456

    Article  CAS  Google Scholar 

  21. R. Nikbakht, H. Assadi, K. Jahani, M. Saadati and B. Jodoin, Cold Spray Deformation and Deposition of Blended Feedstock Powders Not Necessarily Obey the Rule of Mixture, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127644

    Article  Google Scholar 

  22. X.L. Xie, Y.C. Xie, Z.Q. Tan, C.Y. Chen, J. Wang, Z.Q. Li, X.P. Li, G. Ji and H.L. Liao, Additive Manufacturing of a CNT/Al6Si Composite with the Nanolaminated Architecture via Cold Spray Deposition, Mater. Sci. Forum, 2018, 941, p 2173–2177. https://doi.org/10.4028/www.scientific.net/MSF.941.2173

    Article  Google Scholar 

  23. E.J.T. Pialago and C.W. Park, Cold Spray Deposition Characteristics of Mechanically alloyed Cu-CNT Composite Powders, Appl. Surf. Sci., 2014, 308, p 63–74. https://doi.org/10.1016/j.apsusc.2014.04.096

    Article  CAS  Google Scholar 

  24. J. Choi, N. Okimura, T. Yamada, Y. Hirata, N. Ohtake and H. Akasaka, Deposition of Graphene–Copper Composite Film by Cold Spray from Particles with Graphene Grown on Copper Particles, Diam. Relat. Mater., 2021, 116, p 108384. https://doi.org/10.1016/j.diamond.2021.108384

    Article  CAS  Google Scholar 

  25. C. Huang, W. Li, Y. Xie, M.-P. Planche, H. Liao and G. Montavon, Effect of Substrate Type on Deposition Behavior and Wear Performance of Ni-Coated Graphite/Al Composite Coatings Deposited by Cold Spraying, J. Mater. Sci. Technol., 2017, 33, p 338–346. https://doi.org/10.1016/j.jmst.2016.11.016

    Article  CAS  Google Scholar 

  26. L. Zhu, S. Hu, B. Xu and G. Zhang, Fabrication and Characterization of Ni-Coated Graphite/Al–Zn Coatings by Cold Spraying, Surf. Eng., 2019, 36, p 1032–1039. https://doi.org/10.1080/02670844.2019.1666227

    Article  CAS  Google Scholar 

  27. Y. Zhang, J. Michael Shockley, P. Vo and R.R. Chromik, Tribological Behavior of a Cold-Sprayed Cu–MoS2 Composite Coating During Dry Sliding Wear, Tribol. Lett., 2016, 62, p 9. https://doi.org/10.1007/s11249-016-0646-2

    Article  CAS  Google Scholar 

  28. M. Neshastehriz, I. Smid, A.E. Segall and T.J. Eden, On the Bonding Mechanism in Cold Spray of Deformable hex-BN-Ni Clusters, J. Therm. Spray Technol., 2016, 25, p 982–991. https://doi.org/10.1007/s11666-016-0416-6

    Article  CAS  Google Scholar 

  29. L.M. Stark, I. Smid, A.E. Segall, T.J. Eden and J. Potter, Self-Lubricating Cold-Sprayed Coatings Utilizing Microscale Nickel-Encapsulated Hexagonal Boron Nitride, Tribol. Trans., 2012, 55, p 624–630. https://doi.org/10.1080/10402004.2012.686088

    Article  CAS  Google Scholar 

  30. B. Jodoin, P. Richer, G. Bérubé, L. Ajdelsztajn, A. Erdi-Betchi and M. Yandouzi, Pulsed-Gas Dynamic Spraying: Process Analysis, Development and Selected Coating Examples, Surf. Coat. Technol., 2007, 201, p 7544–7551. https://doi.org/10.1016/j.surfcoat.2007.02.033

    Article  CAS  Google Scholar 

  31. M. Yandouzi, L. Ajdelsztajn and B. Jodoin, WC-Based Composite Coatings Prepared by the Pulsed Gas Dynamic Spraying Process: Effect of the Feedstock Powders, Surf. Coat. Technol., 2008, 202, p 3866–3877. https://doi.org/10.1016/j.surfcoat.2008.01.036

    Article  CAS  Google Scholar 

  32. M. Yandouzi and B. Jodoin, Cermet Coatings Prepared by Pulsed Gas Dynamic Spraying Process: Effect of the Process Parameters, Surf. Coat. Technol., 2008, 203, p 104–114. https://doi.org/10.1016/j.surfcoat.2008.08.018

    Article  CAS  Google Scholar 

  33. M. Yandouzi, P. Richer and B. Jodoin, SiC Particulate Reinforced Al–12Si Alloy Composite Coatings Produced by the Pulsed Gas Dynamic Spray Process: Microstructure and Properties, Surf. Coat. Technol., 2009, 203, p 3260–3270. https://doi.org/10.1016/j.surfcoat.2009.04.001

    Article  CAS  Google Scholar 

  34. M. Yandouzi, A.J. Böttger, R.W.A. Hendrikx, M. Brochu, P. Richer, A. Charest and B. Jodoin, Microstructure and Mechanical Properties of B4C Reinforced Al-Based Matrix composite Coatings Deposited by CGDS and PGDS Processes, Surf. Coat. Technol., 2010, 205, p 2234–2246. https://doi.org/10.1016/j.surfcoat.2010.08.143

    Article  CAS  Google Scholar 

  35. B. Jodoin, Method for Depositing Particulate Material onto a Surface, Google Patents, 2012.

  36. M. Karimi, G.W. Rankin and B. Jodoin, Shock-Wave Induced Spraying: Gas and Particle Flow and Coating Analysis, Surf. Coat. Technol., 2012, 207, p 435–442. https://doi.org/10.1016/j.surfcoat.2012.07.044

    Article  CAS  Google Scholar 

  37. M. Yandouzi, H. Bu, M. Brochu and B. Jodoin, Nanostructured Al-Based Metal Matrix Composite Coating Production by Pulsed Gas Dynamic Spraying Process, J. Therm. Spray Technol., 2012, 21, p 609–619. https://doi.org/10.1007/s11666-011-9727-9

    Article  CAS  Google Scholar 

  38. S.T. Oyinbo and T.-C. Jen, A Comparative Review on Cold Gas Dynamic Spraying Processes and technologies, Manuf. Rev., 2019, 6, p 25. https://doi.org/10.1051/mfreview/2019023

    Article  CAS  Google Scholar 

  39. E. Irissou, L.-P. Lefebvre, Porous Metal Coatings Using Shockwave Induced Spraying, Google Patents, 2017.

  40. M. Karimi Esfahani, Advancement of Shock-wave Induced Spraying Process through the Study of Gas and Particle Flow Fields, Ph.D. Thesis, University of Windsor, 2013.

  41. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 1161–1176. https://doi.org/10.1007/s11666-011-9662-9

    Article  CAS  Google Scholar 

  42. N. Fan, J. Cizek, C. Huang, X. Xie, Z. Chlup, R. Jenkins, R. Lupoi and S. Yin, A New Strategy for Strengthening Additively Manufactured Cold Spray Deposits Through in-Process Densification, Addit. Manuf., 2020, 36, p 101626. https://doi.org/10.1016/j.addma.2020.101626

    Article  CAS  Google Scholar 

  43. Y. Wang, Y. Zhu and R. Li, Microstructure and Wear Behavior of Cold-Sprayed Cu-BNNSs Composite Coating, J. Therm. Spray Tech., 2021, 30, p 1482–1492. https://doi.org/10.1007/s11666-021-01227-6

    Article  CAS  Google Scholar 

  44. S. Yin, J. Cizek, J. Cupera, M. Hassani, X. Luo, R. Jenkins, Y. Xie, W. Li and R. Lupoi, Formation Conditions of Vortex-Like Intermixing Interfaces in Cold Spray, Mater. Des., 2021, 200, p 109444. https://doi.org/10.1016/j.matdes.2020.109444

    Article  CAS  Google Scholar 

  45. W.D. Sun, J. Wang, K.W. Wang, J.J. Pan, R. Wang, M. Wen and K. Zhang, Turbulence-like Cu/MoS2 Films: Stucture, Mechanical and Tribological Properties, Surf. Coat. Technol., 2021, 422, p 127490. https://doi.org/10.1016/j.surfcoat.2021.127490

    Article  CAS  Google Scholar 

  46. R. Nikbakht, M. Saadati, T.S. Kim, M. Jahazi, H.S. Kim and B. Jodoin, Cold Spray Deposition Characteristic and Bonding of CrMnCoFeNi High Entropy Alloy, Surf. Coat. Technol., 2021, 425, p 127748. https://doi.org/10.1016/j.surfcoat.2021.127748

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the help of Dr. F. Variola from Mechanical Engineering Department of University of Ottawa for providing guidance and access to Raman Spectroscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nikbakht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikbakht, R., Jodoin, B. Thick Cu-hBN Coatings Using Pulsed Gas Dynamic Spray Process: Coating Formation Analysis and Characterization. J Therm Spray Tech 31, 609–622 (2022). https://doi.org/10.1007/s11666-022-01318-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01318-y

Keywords

Navigation