Skip to main content
Log in

Microstructural, Mechanical, and Tribological Evaluation of Cu-Al-based Coatings Deposited by APS and HVOF

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal-sprayed coatings have been extensively used in aerospace with the main purpose to overcome critical challenges such as abrasive wear, corrosion, and erosion under high temperatures and pressures. Cu-Al-based thermal sprayed coatings are commonly employed in tribological interfaces within gas turbine engines to improve the wear resistance. These coatings are typically deposited by more traditional thermal spray techniques such as Air Plasma Spray (APS), which can result in high amounts of oxidation within the coating. The main purpose of this study is to carefully analyze and assess a lower temperature deposition technique that is High Velocity Oxygen Fuel (HVOF). More specifically, commercially available Cu-10Al powders were deposited by APS and HVOF and compared in terms of their microstructural, mechanical properties, and tribological behavior at various temperatures. The results showed that the friction coefficient for both coatings was equivalent at room temperature while it was lower for the APS coating at high temperature when compared to the HVOF one. Similarly, the specific wear rates showed little difference between the different deposition processes at room temperature while the APS coating had a lower wear rate at elevated temperature when compared to the HVOF coating. The differences in the friction and wear behavior were attributed to differences in the interactions and phenomena that occur at the interface between the coating and counter balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.C. Barshilia, Surface Modification Technologies for Aerospace and Engineering Applications: Current Trends, Challenges and Future Prospects, Trans Indian Natl. Acad. Eng., 2021, 6, p 173-188. https://doi.org/10.1007/s41403-021-00208-z

    Article  Google Scholar 

  2. Advanced tribological coating solutions for next generation mechanical systems in extreme environments, in: n.d.

  3. P. Stoyanov, L. Dawag, D.G. Goberman and D. Shah, Friction and Wear Characteristics of Single Crystal Ni-Based Superalloys at Elevated Temperatures, Tribol. Lett., 2018, 66, p 47. https://doi.org/10.1007/s11249-018-0994-1

    Article  CAS  Google Scholar 

  4. P. Stoyanov, A. Boyne, and A. Ignatov, Tribological Characteristics of Co-Based Plasma Sprayed Coating in Extreme Conditions, Results Surf. Interf., 2021, 3, p 100007. https://doi.org/10.1016/j.rsurfi.2021.100007

    Article  Google Scholar 

  5. K.M. Harrington, E.C. Miller, A. Frye, and P. Stoyanov, Tribological Insights of Co- and Ni-Based Alloys in Extreme Conditions, Wear, 2021, 477, p 203827. https://doi.org/10.1016/j.wear.2021.203827

    Article  CAS  Google Scholar 

  6. A. Roy, V.N.V. Munagala, P. Patel, N. Sharifi, S.A. Alidokht, M. Makowiec, R.R. Chromik, C. Moreau, and P. Stoyanov, Friction and Wear Behavior of Suspension Plasma Sprayed Tantalum Oxide Coatings at Elevated Temperatures, Surf. Coat. Technol., 2023, 452, p 129097. https://doi.org/10.1016/j.surfcoat.2022.129097

    Article  CAS  Google Scholar 

  7. S.R. Bakshi and S.P. Harimkar, Surface Engineering for Extreme Conditions, JOM, 2015, 67, p 1526-1527. https://doi.org/10.1007/s11837-015-1481-x

    Article  Google Scholar 

  8. Y.J. Xue and Y.Z. Zhang, Surface Coatings in Tribological and Wearresistant Applications, Int. Heat Treat. Surface Eng., 2009, 3, p 17-25. https://doi.org/10.1179/174951509X467020

    Article  Google Scholar 

  9. S. Yin, J. Cizek, X. Suo, W. Li, and H. Liao, Thermal Spray Technology, Adv. Mater. Sci. Eng., 2019, 2019, p 1-2. https://doi.org/10.1155/2019/8654764

    Article  Google Scholar 

  10. J. Lince, Coatings for Aerospace Applications, (2017). https://doi.org/10.13140/RG.2.2.21638.16964.

  11. Handbook of Environmental Degradation of Materials, Elsevier, 2018. https://doi.org/10.1016/C2016-0-02081-8.

  12. G. Gupta, R.K. Tyagi, S.K. Rajput, R. Maan, S. Jacob, S. Verma, (2021) Review on Thermal Spray Coating Methods and Property of Different Types of Metal-Based Coatings. In: BP Sharma, GS Rao, S Gupta, P Gupta, A Prasad (Eds), Advances in Engineering Materials, Springer Singapore: Singapore. pp. 427-439. doi https://doi.org/10.1007/978-981-33-6029-7_40.

  13. V. Viswanathan, N.K. Katiyar, G. Goel, A. Matthews, and S. Goel, Role of Thermal Spray in Combating Climate Change, Emergent Mater., 2021, 4, p 1515-1529. https://doi.org/10.1007/s42247-021-00307-1

    Article  Google Scholar 

  14. C.U. Hardwicke and Y.-C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J Therm Spray Tech., 2013, 22, p 564-576. https://doi.org/10.1007/s11666-013-9904-0

    Article  Google Scholar 

  15. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 1st ed. Wiley, London, 2008. https://doi.org/10.1002/9780470754085

    Book  Google Scholar 

  16. R.S. Lima and B.R. Marple, From APS to HVOF Spraying of Conventional and Nanostructured Titania Feedstock Powders: A Study on the Enhancement of the Mechanical Properties, Surf. Coat. Technol., 2006, 200, p 3428-3437. https://doi.org/10.1016/j.surfcoat.2004.10.137

    Article  CAS  Google Scholar 

  17. H. Lee, S. Mall, J.H. Sanders, S.K. Sharma, and R.S. Magaziner, Characterization of Fretting Wear Behavior of Cu-Al Coating on Ti-6Al-4V Substrate, Tribol. Int., 2007, 40, p 1301-1310. https://doi.org/10.1016/j.triboint.2007.02.006

    Article  CAS  Google Scholar 

  18. P. Stoyanov, K.M. Harrington, and A. Frye, Insights into the Tribological Characteristic of Cu-Based Coatings under Extreme Contact Conditions, JOM, 2020, 72, p 2191-2197. https://doi.org/10.1007/s11837-020-04087-7

    Article  CAS  Google Scholar 

  19. W. Ren, S. Mall, J.H. Sanders, and S.K. Sharma, Degradation of Cu-Al Coating on Ti-6AI-4V Substrate under Fretting Fatigue Conditions, Tribol. Trans., 2003, 46, p 353-360. https://doi.org/10.1080/10402000308982637

    Article  CAS  Google Scholar 

  20. O. Jin, S. Mall, J.H. Sanders, and S.K. Sharma, Durability of Cu-Al Coating on Ti-6Al-4V Substrate under Fretting Fatigue, Surf. Coat. Technol., 2006, 201, p 1704-1710. https://doi.org/10.1016/j.surfcoat.2006.02.051

    Article  CAS  Google Scholar 

  21. V. Fridrici, S. Fouvry, and P. Kapsa, Fretting Wear Behavior of a Cu-Ni-In Plasma Coating, Surf. Coat. Technol., 2003, 163-164, p 429-434. https://doi.org/10.1016/S0257-8972(02)00639-4

    Article  CAS  Google Scholar 

  22. O. Jin, S. Mall, J.H. Sanders, S.K. Sharma, and C.H. Hager, Fretting Fatigue Behavior of Cu-Al-Coated Ti-6Al-4V, Tribol. Trans., 2007, 50, p 497-506. https://doi.org/10.1080/10402000701613393

    Article  Google Scholar 

  23. A. Ranjan, A. Islam, M. Pathak, M.K. Khan, and A.K. Keshri, Plasma Sprayed Copper Coatings for Improved Surface and Mechanical Properties, Vacuum, 2019, 168, p 108834. https://doi.org/10.1016/j.vacuum.2019.108834

    Article  CAS  Google Scholar 

  24. S. Lifan, G. Yuan, and K. Dejun, Effect of MoS2 Mass Fraction on Microstructure and Tribological Characteristics of Laser Cladded Cu-10Al Coating, Surfaces Interf., 2022, 28, p 101599. https://doi.org/10.1016/j.surfin.2021.101599

    Article  CAS  Google Scholar 

  25. W. Ren, S. Mall, J.H. Sanders, and S.K. Sharma, Evaluation of Coatings on Ti-6Al-4V Substrate under Fretting Fatigue, Surf. Coat. Technol., 2005, 192, p 177-188. https://doi.org/10.1016/j.surfcoat.2004.07.084

    Article  CAS  Google Scholar 

  26. P.O. Morales, Influence of Gas Pressure on the Mechanical and Tribological Properties of Cu-Al Coatings Deposited via Thermal Spray, Coatings., 2019, 9, p 722. https://doi.org/10.3390/coatings9110722

    Article  CAS  Google Scholar 

  27. S.W. Rukhande, W.S. Rathod, and D. Bhosale, High-Temperature Tribological Investigation of APS and HVOF Sprayed NiCrBSiFe Coatings on SS 316L, Tribol. Mater. Surfaces Interf., 2022, 16, p 98-109. https://doi.org/10.1080/17515831.2021.1898887

    Article  CAS  Google Scholar 

  28. V. Singh, I. Singh, A. Bansal, A. Omer, A.K. Singla, and D.K. Goyal. Rampal, Cavitation Erosion Behavior of High Velocity Oxy Fuel (HVOF) Sprayed (VC + CuNi-Cr) Based Novel Coatings on SS316 Steel, Surface Coat. Technol., 2022, 432, p 128052. https://doi.org/10.1016/j.surfcoat.2021.128052

    Article  CAS  Google Scholar 

  29. H. Gassot, T. Junquera, V. Ji, M. Jeandin, V. Guipont, C. Coddet, C. Verdy, and L. Grandsire, Comparative Study of Mechanical Properties and Residual Stress Distributions of Copper Coatings Obtained by Different Thermal Spray Processes, Surf. Eng., 2001, 17, p 317-322. https://doi.org/10.1179/026708401101517944

    Article  CAS  Google Scholar 

  30. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66. https://doi.org/10.1016/0040-6090(91)90029-W

    Article  CAS  Google Scholar 

  31. G. Bolelli, L. Lusvarghi, T. Manfredini, F.P. Mantini, R. Polini, E. Turunen, T. Varis, and S.P. Hannula, Comparison Between Plasma- and HVOF-Sprayed Ceramic Coatings Part I: Microstructure and Mechanical Properties, IJSURFSE., 2007, 1, p 38. https://doi.org/10.1504/IJSURFSE.2007.013620

    Article  CAS  Google Scholar 

  32. R. Kamal Jayaraj, S. Malarvizhi, and V. Balasubramanian, Optimizing the Micro-Arc Oxidation (MAO) Parameters to Attain Coatings with Minimum Porosity and Maximum Hardness on the Friction Stir Welded AA6061 Aluminium Alloy Welds, Defence Technol., 2017, 13, p 111-117. https://doi.org/10.1016/j.dt.2017.03.003

    Article  Google Scholar 

  33. O.C. Brandt, Mechanical Properties of HVOF coatings, JTST., 1995, 4, p 147-152. https://doi.org/10.1007/BF02646105

    Article  CAS  Google Scholar 

  34. Abrasive, Erosive and Cavitation Wear, in: Engineering Tribology, Elsevier, 2014: pp. 525-576. https://doi.org/10.1016/B978-0-12-397047-3.00011-4.

  35. G. Bolelli, L. Lusvarghi, T. Manfredini, F.P. Mantini, E. Turunen, T. Varis, and S.P. Hannula, Comparison Between Plasma- and HVOF-Sprayed Ceramic Coatings Part II Tribological Behaviour, IJSURFSE, 2007, 1, p 62. https://doi.org/10.1504/IJSURFSE.2007.013621

    Article  CAS  Google Scholar 

  36. Z. Liu, C. Patzig, S. Selle, T. Höche, P. Gumbsch, and C. Greiner, Stages in the Tribologically-Induced Oxidation of High-Purity Copper, Scripta Mater., 2018, 153, p 114-117. https://doi.org/10.1016/j.scriptamat.2018.05.008

    Article  CAS  Google Scholar 

  37. J.S. Lehmann, R. Schwaiger, M. Rinke, and C. Greiner, How Tribo-Oxidation Alters the Tribological Properties of Copper and Its Oxides, Adv. Mater. Interfaces, 2021, 8, p 2001673. https://doi.org/10.1002/admi.202001673

    Article  CAS  Google Scholar 

  38. T.F.J. Quinn, Review of Oxidational Wear, Tribol. Int., 1983, 16, p 257-271. https://doi.org/10.1016/0301-679X(83)90086-5

    Article  CAS  Google Scholar 

  39. K.I. Schiffmann and A. Hieke, Analysis of Microwear Experiments on Thin DLC Coatings: Friction, Wear and Plastic Deformation, Wear, 2003, 254, p 565-572. https://doi.org/10.1016/S0043-1648(03)00188-1

    Article  CAS  Google Scholar 

  40. J.G. Lenard, M. Pietrzyk, and L. Cser, Microstructure Evolution and Mechanical Properties of the Final Product, Mathematical and Physical Simulation of the Properties of Hot Rolled Products. Elsevier, NJ, 1999, p 151-236

    Chapter  Google Scholar 

  41. Fundamentals of Contact between Solids, in: Engineering Tribology, Elsevier, 2014: pp. 475-524. https://doi.org/10.1016/B978-0-12-397047-3.00010-2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cyrus Bidmeshki or Pantcho Stoyanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidmeshki, C., Liberati, A.C., Roy, A. et al. Microstructural, Mechanical, and Tribological Evaluation of Cu-Al-based Coatings Deposited by APS and HVOF. J Therm Spray Tech 32, 2321–2335 (2023). https://doi.org/10.1007/s11666-023-01665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01665-4

Keywords

Navigation