Skip to main content
Log in

An Investigation of the Effect of Post Heat Treatment on the Wear and Corrosion Behavior of HVOF-sprayed WC-10Co4Cr Coatings

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The impact of heat treatment on the wear and corrosion behavior of WC-10Co4Cr coating was investigated in this study. Firstly, the prepared samples were subjected to argon protection heat treatments at 550, 750 and 950 °C. The samples were characterized using SEM, XRD and microhardness testing. The results showed that the change in temperature affected the phase transformation and mechanical properties. The coating did not undergo a phase change after the heat treatment at 550 °C, while the transformation of the η-phase occurred in the coating after heat treatment at 750 and 950 °C. However, heat treatment of the coating led to adhesive failure, resulting in partial separation between the coating and substrate. Due to the formation of hard phases, the wear resistance of the coating was improved after heat treatment, with the main wear mechanisms being micro-cutting and delamination. According to the corrosion test results, the corrosion resistance of the coating was significantly improved after heat treatment at 950 °C, with a reduction of 78.1% in its corrosion rate in 3.5 wt.% NaCl compared to the original coating. This was attributed to the precipitation of η-phase and recrystallization of the bonding phase in the coating which reduced the micro-cell effect within the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Ghadami and A. Sabour Rouh Aghdam, Improvement of High Velocity Oxy-Fuel Spray Coatings by Thermal Post-Treatments: A Critical Review, Thin Solid Films, 2019, 678, p 42-52. https://doi.org/10.1016/j.tsf.2019.02.019

    Article  CAS  Google Scholar 

  2. C. Zheng, Y. Liu, J. Qin, C. Chen, and R. Ji, Wear Behavior of HVOF Sprayed WC Coating Under Water-in-Oil Fracturing Fluid Condition, Tribol. Int., 2017, 115, p 28-34. https://doi.org/10.1016/j.triboint.2017.05.002

    Article  CAS  Google Scholar 

  3. L. Wang, P. Qiu, Y. Liu, W. Zhou, G. Gou, and H. Chen, Corrosion Behavior of Thermal Sprayed WC Cermet Coatings Containing Metallic Binders in Saline Environment, Nonferr. Metal Soc., 2013, 23, p 2611-2617. https://doi.org/10.1016/S1003-6326(13)62775-2

    Article  CAS  Google Scholar 

  4. H. Wang, Q. Qiu, M. Gee, C. Hou, X. Liu, and X. Song, Wear resistance Enhancement of HVOF-Sprayed WC-Co Coating by Complete Densification of Starting Powder, Mater. Des., 2020, 191, p 108586. https://doi.org/10.1016/j.matdes.2020.108586

    Article  CAS  Google Scholar 

  5. B. Song, J.W. Murray, R.G. Wellman, Z. Pala, and T. Hussain, Dry Sliding Wear Behavior of HVOF Thermal Sprayed WC-Co-Cr and WC-CrxCy-Ni Coatings, Wear, 2020, 442-443, p 203114. https://doi.org/10.1016/j.wear.2019.203114

    Article  CAS  Google Scholar 

  6. J. Pulsford, F. Venturi, S. Kamnis, and T. Hussain, Sliding Wear Behaviour of WC-Co Reinforced NiCrFeSiB HVOAF Thermal Spray Coatings Against WC-Co and Al2O3 Counterbodies, Surf. Coat. Tech., 2020, 386, p 125468. https://doi.org/10.1016/j.surfcoat.2020.125468

    Article  CAS  Google Scholar 

  7. Q. Wang, L. Li, G. Yang, X. Zhao, and Z. Ding, Influence of Heat Treatment on the Microstructure and Performance of High-Velocity Oxy-Fuel Sprayed WC-12Co Coatings, Surf. Coat. Tech, 2012, 206, p 4000-4010. https://doi.org/10.1016/j.surfcoat.2012.03.080

    Article  CAS  Google Scholar 

  8. F. Ghadami, M.H. Sohi, and S. Ghadami, Effect of Bond Coat and Post-Heat Treatment on the Adhesion of Air Plasma Sprayed WC-Co Coatings, Surf. Coat. Tech, 2015, 261, p 289-294. https://doi.org/10.1016/j.surfcoat.2014.11.016

    Article  CAS  Google Scholar 

  9. J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, and H.K. Park, Mechanical Properties and Microstructural Evolution of WC-Binderless and WC-Co Hard Materials by the Heat Treatment Process, J Alloy Compd, 2019, 786, p 1-10. https://doi.org/10.1016/j.jallcom.2019.01.282

    Article  CAS  Google Scholar 

  10. N. Vashishtha, S.G. Sapate, P. Bagde, and A.B. Rathod, Effect of Heat Treatment on Friction and Abrasive Wear Behaviour of WC-12Co and Cr3C2-25NiCr Coatings, Tribol. Int, 2018, 118, p 381-399. https://doi.org/10.1016/j.triboint.2017.10.017

    Article  CAS  Google Scholar 

  11. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Influence of Heat Treatment on the Abrasive Wear Behaviour of HVOF Sprayed WC-Co Coatings, Surf. Coat. Tech, 1998, 105, p 13-24. https://doi.org/10.1016/S0257-8972(98)00444-7

    Article  CAS  Google Scholar 

  12. S. Khameneh Asl, T. Rabizadeh, and N.F. Noori, The Effects of Heat Treatment on the Corrosion Behavior of HVOF-Sprayed WC-17wt%Co Coatings, Prot. Met. Phys. Chem. Surf, 2019, 55, p 936-941. https://doi.org/10.1134/S2070205119050022

    Article  Google Scholar 

  13. S. Khameneh Asl, M.H. Sohi, and S.M.M. Hadavi, The Effect of the Heat Treatment on Residual Stresses in HVOF Sprayed WC-Co Coating MATER, Sci., 2004, 465-466(427), p 432. https://doi.org/10.4028/www.scientific.net/MSF.465-466.427

    Article  Google Scholar 

  14. T.K. Mishra, P. Sahu, and V. Gedam, Effect of Heat Treatment on Friction and Abrasive Wear Behavior of WC-12Co Microwave Cladding, Mater. Today Proc., 2022, 56, p 373-378. https://doi.org/10.1016/j.matpr.2022.01.217

    Article  CAS  Google Scholar 

  15. P. Mi, T. Wang, and F. Ye, Influences of the Compositions and Mechanical Properties of HVOF Sprayed Bimodal WC-Co Coating on its High Temperature Wear Performance, Int. J. Refract. Met. H, 2017, 69, p 158-163. https://doi.org/10.1016/j.ijrmhm.2017.08.012

    Article  CAS  Google Scholar 

  16. A.C. Karaoglanli, M. Oge, K.M. Doleker, and M. Hotamis, Comparison of Tribological Properties of HVOF Sprayed Coatings with Different Composition, Surf. Coat. Tech., 2017, 318, p 299-308. https://doi.org/10.1016/j.surfcoat.2017.02.021

    Article  CAS  Google Scholar 

  17. T.K. Mishra, A. Kumar, and S.K. Sinha, Experimental Investigation and Study of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr Coating on its Sliding Wear Behaviour, Int. J. Refract. Met. H, 2021, 94, p 105404. https://doi.org/10.1016/j.ijrmhm.2020.105404

    Article  CAS  Google Scholar 

  18. A.G. Lekatou, D. Sioulas, and D. Grimanelis, Corrosion and Wear of Coatings Fabricated by HVOF-Spraying of Nanostructured and Conventional WC-10Co-4Cr Powders on Al7075-T6, Int. J. Refract. Met. H, 2023, 112, p 106164. https://doi.org/10.1016/j.ijrmhm.2023.106164

    Article  CAS  Google Scholar 

  19. E.S.M. Sherif, M.M. El Rayes, and H.S. Abdo, WC-Co and WC-Co-Cr Coatings for the Protection of API Pipeline Steel from Corrosion in 4% NaCl Solution, Coatings, 2020, 10, p 275. https://doi.org/10.3390/coatings10030275

    Article  CAS  Google Scholar 

  20. J.A. Picas, M. Punset, E. Rupérez, S. Menargues, E. Martin, and M.T. Baile, Corrosion Mechanism of HVOF Thermal Sprayed WC-CoCr Coatings in Acidic Chloride Media, Surf. Coat. Tech, 2019, 371, p 378-388. https://doi.org/10.1016/j.surfcoat.2018.10.025

    Article  CAS  Google Scholar 

  21. J.M. Perry, A. Neville, V.A. Wilson, and T. Hodgkiess, Assessment of the Corrosion Rates and Mechanisms of a WC-Co-Cr HVOF Coating in Static and Liquid-Solid Impingement Saline Environments, Surf. Coat. Tech, 2001, 137, p 43-51. https://doi.org/10.1016/S0257-8972(00)01062-8

    Article  CAS  Google Scholar 

  22. R. Ahmed, N.H. Faisal, N.M. Al-Anazi, S. Al-Mutairi, F.L. Toma, L.M. Berger, A. Otthoff, E.K. Polychroniadis, M. Sall, D. Chaliampalias, and M.F.A. Goosen, Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings, J. Therm. Spray Tech., 2015, 24, p 357-377. https://doi.org/10.1007/s11666-014-0174-2

    Article  CAS  Google Scholar 

  23. H. Wang, H. Lu, X. Song, X. Yan, X. Liu, and Z. Nie, Corrosion Resistance Enhancement of WC Cermet Coating by Carbides Alloying, Corros. Sci., 2019, 147, p 372-383. https://doi.org/10.1016/j.corsci.2018.11.028

    Article  CAS  Google Scholar 

  24. L. Fedrizzi, L. Valentinelli, S. Rossi, and S. Segna, Tribocorrosion Behaviour of HVOF Cermet Coatings, Corros. Sci, 2007, 49, p 2781-2799. https://doi.org/10.1016/j.corsci.2007.02.003

    Article  CAS  Google Scholar 

  25. P. Singh, D. Kumar Goyal, and A. Bansal, Electrochemical Corrosion and Erosive Wear Behaviour of Microwave Processed WC-10Co4Cr Clad on SS-316, Mater. Today Proc., 2022, 50, p 1900-1905. https://doi.org/10.1016/j.matpr.2021.09.241

    Article  CAS  Google Scholar 

  26. T. Gong, P. Yao, X. Zuo, Z. Zhang, Y. Xiao, L. Zhao, H. Zhou, M. Deng, Q. Wang, and A. Zhong, Influence of WC Carbide Particle Size on the Microstructure and Abrasive Wear Behavior of WC-10Co-4Cr Coatings for Aircraft Landing Gear, Wear, 2016, 362-363, p 135-145. https://doi.org/10.1016/j.wear.2016.05.022

    Article  CAS  Google Scholar 

  27. J.M. Guilemany, N. Espallargas, P.H. Suegama, A.V. Benedetti, and J. Fernández, Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxyfuel, J. Therm. Spray Tech., 2005, 14, p 335-341. https://doi.org/10.1361/105996305X59350

    Article  Google Scholar 

  28. L. Zhao, Z. Zhang, B. Wang, S. Xu, and C. Si, Microstructure and Sliding Wear Properties of WC-10Co-4Cr Coatings on the Inner Surface of TC4 Slender Tube by HVOF, Mater. Lett., 2022, 328, p 133203. https://doi.org/10.1016/j.matlet.2022.133203

    Article  CAS  Google Scholar 

  29. S. Matthews, J. Ansbro, C.C. Berndt, and A.S.M. Ang, Carbide Dissolution in WC-17Co Thermal Spray Coatings: Part 1-Project Concept and As-Sprayed Coatings, J. Alloy Compd., 2021, 856, p 157464. https://doi.org/10.1016/j.jallcom.2020.157464

    Article  CAS  Google Scholar 

  30. M.E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, Plasma Sprayed WC-Co Coatings: Influence of Spray Conditions (Atmospheric and Low Pressure Plasma Spraying) on the Crystal Structure, Porosity, and Hardness, J. Vac. Sci. Technol, A, 1985, 3, p 2483-2489. https://doi.org/10.1116/1.572863

    Article  CAS  Google Scholar 

  31. J.M. Guilemany, J.M. de Paco, J. Nutting, and J.R. Miguel, Characterization of the W2C Phase Formed During the High Velocity Oxygen Fuel Spraying of a WC+12 Pct Co Powder, Metall. Mater. Trans, A, 1999, 30, p 1913-1921. https://doi.org/10.1007/s11661-999-0002-3

    Article  Google Scholar 

  32. C. Verdon, A. Karimi, and J.L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mat. Sci. Eng. A-Struct., 1998, 246, p 11-24. https://doi.org/10.1016/S0921-5093(97)00759-4

    Article  Google Scholar 

  33. Y. Zhou, X. Liu, J. Kang, W. Yue, W. Qin, G. Ma, Z. Fu, L. Zhu, D. She, H. Wang, J. Liang, W. Weng, and C. Wang, Corrosion Behavior of HVOF Sprayed WC-10Co4Cr Coatings in the Simulated Seawater Drilling Fluid Under the High Pressure, Eng. Fail. Anal., 2020, 109, p 104338. https://doi.org/10.1016/j.engfailanal.2019.104338

    Article  CAS  Google Scholar 

  34. B. Yin, H.D. Zhou, D.L. Yi, J.M. Chen, and F.Y. Yan, Microsliding Wear Behaviour of HVOF Sprayed Conventional and Nanostructured WC-12Co Coatings at Elevated Temperatures, Surf. Eng., 2010, 26, p 469-477. https://doi.org/10.1179/026708410X12506870724352

    Article  CAS  Google Scholar 

  35. C.J. Li, A. Ohmori, and Y. Harada, Formation of an Amorphous Phase in Thermally Sprayed WC-Co, J. Therm. Spray Tech., 1996, 5, p 69-73. https://doi.org/10.1007/BF02647520

    Article  CAS  Google Scholar 

  36. J.H. Kim, K.H. Baik, B.G. Seong, and S.Y. Hwang, Effects of Post-Spraying Heat Treatment on Wear Resistance of WC-Co Nanocomposite Coatings, Mat. Sci. Eng. A-Struct., 2007, 449-451, p 876-879. https://doi.org/10.1016/j.msea.2006.02.320

    Article  CAS  Google Scholar 

  37. J. Nerz, B. Kushner, and A. Rotolico, Microstructural Evaluation of Tungsten Carbide-Cobalt Coatings, J. Therm. Spray Tech., 1992, 1, p 147-152. https://doi.org/10.1007/BF02659015

    Article  CAS  Google Scholar 

  38. C. Yang, C. Hu, C. Xiang, H. Nie, X. Gu, L. Xie, J. He, W. Zhang, Z. Yu, and J. Luo, Interfacial Superstructures and Chemical Bonding Transitions at Metal-Ceramic Interfaces, Sci. Adv., 2021, 7, p 6667. https://doi.org/10.1126/sciadv.abf6667

    Article  CAS  Google Scholar 

  39. G. Prashar, H. Vasudev, and L. Thakur, Influence of Heat Treatment on Surface Properties of HVOF Deposited WC and Ni-Based Powder Coatings: A Review, Surf. Topogr. Metrol., 2021, 9, p 043002. https://doi.org/10.1088/2051-672X/ac3a52

    Article  Google Scholar 

  40. S. Matthews, J. Ansbro, C. Berndt, and A. Ang, Thermally Induced Metallurgical Transformations in WC-17Co Thermal Spray Coatings as a Function of Carbide Dissolution: Part 2-Heat-Treated Coatings, Int. J. Refract. Met. H, 2021, 96, p 105486. https://doi.org/10.1016/j.ijrmhm.2021.105486

    Article  CAS  Google Scholar 

  41. A. Karimi, Ch. Verdon, and G. Barbezat, Microstructure and Hydroabrasive Wear Behaviour of High Velocity Oxy-Fuel Thermally Sprayed WC-Co(Cr) Coatings, Surf. Coat. Tech., 1993, 57, p 81-89. https://doi.org/10.1016/0257-8972(93)90340-T

    Article  CAS  Google Scholar 

  42. J.M. Guilemany, N. Espallargas, P.H. Suegama, A.V. Benedetti, and J. Fernández, High-Velocity Oxyfuel Cr3C2-NiCr Replacing Hard Chromium Coatings, J. Therm. Spray Tech., 2005, 14, p 335-341. https://doi.org/10.1361/105996305X59350

    Article  Google Scholar 

  43. I. Konyashin, A.A. Zaitsev, D. Sidorenko, E.A. Levashov, B. Ries, S.N. Konischev, M. Sorokin, A.A. Mazilkin, M. Herrmann, and A. Kaiser, Wettability of Tungsten Carbide by Liquid Binders in WC-Co Cemented Carbides: Is it Complete for all Carbon Contents?, Int. J. Refract. Met. H, 2017, 62, p 134-148. https://doi.org/10.1016/j.ijrmhm.2016.06.006

    Article  CAS  Google Scholar 

  44. B.B. Straumal, I. Konyashin, B. Ries, A.B. Straumal, A.A. Mazilkin, K.I. Kolesnikova, A.M. Gusak, and B. Baretzky, Pseudopartial Wetting of WC/WC Grain Boundaries in Cemented Carbides, Mater. Lett., 2015, 147, p 105-108. https://doi.org/10.1016/j.matlet.2015.02.029

    Article  CAS  Google Scholar 

  45. E. Jonda, L. Łatka, M. Godzierz, and A. Maciej, Investigations of Microstructure and Corrosion Resistance of WC-Co and WC-Cr3C2-Ni Coatings Deposited by HVOF on Magnesium Alloy Substrates, Surf. Coat. Tech., 2023, 459, p 129355. https://doi.org/10.1016/j.surfcoat.2023.129355

    Article  CAS  Google Scholar 

  46. I. Konyashin, B.B. Straumal, B. Ries, M.F. Bulatov, and K.I. Kolesnikova, Contact Angles of WC/WC Grain Boundaries with Binder in Cemented Carbides with Various Carbon Content, Mater. Lett., 2017, 196, p 1-3. https://doi.org/10.1016/j.matlet.2017.03.001

    Article  CAS  Google Scholar 

  47. S.Y. Park, M.C. Kim, and C.G. Park, Mechanical Properties and Microstructure Evolution of the Nano WC-Co Coatings Fabricated by Detonation Gun Spraying with Post Heat Treatment, Mat. Sci. Eng. A-Struct., 2007, 449-451, p 894-897. https://doi.org/10.1016/j.msea.2006.02.444

    Article  CAS  Google Scholar 

  48. M.M. Lima, C. Godoy, J.C. Avelar-Batista, and P.J. Modenesi, Toughness Evaluation of HVOF WC-Co Coatings Using Non-Linear Regression Analysis, Mat. Sci. Eng. A-Struct., 2003, 357, p 337-345. https://doi.org/10.1016/S0921-5093(03)00204-1

    Article  CAS  Google Scholar 

  49. M. Gallego, S.C. Chávez, J. De La Roche, and A. Toro, Effect of Heat Treatment on the Wet Abrasion Resistance of WC-10Co4Cr Coatings Deposited onto Stainless Steel by HVOF, Tribol.-Mater. Surf. Interfaces, 2022, 16, p 168-176. https://doi.org/10.1080/17515831.2021.1938869

    Article  CAS  Google Scholar 

  50. P.H. Gao, B.Y. Chen, W. Wang, H. Jia, J.P. Li, Z. Yang, and Y.C. Guo, Simultaneous Increase of Friction Coefficient and Wear Resistance Through HVOF Sprayed WC-(nano WC-Co), Surf. Coat. Tech, 2019, 363, p 379-389. https://doi.org/10.1016/j.surfcoat.2019.02.042

    Article  CAS  Google Scholar 

  51. P. Mi, H. Zhao, T. Wang, and F. Ye, Sliding Wear Behavior of HVOF Sprayed WC-(nano-WC-Co) Coating at Elevated Temperatures, Mater. Chem. Phys., 2018, 206, p 1-6. https://doi.org/10.1016/j.matchemphys.2017.09.066

    Article  CAS  Google Scholar 

  52. A.R. Govande, S. Tailor, B.R. Sunil, and R. Dumpala, Effect of Inert Environment on the Sliding Wear Behaviour of the HVOF Sprayed WC-12Co Coating, Int. J. Refract. Met. H, 2023, 111, p 106109. https://doi.org/10.1016/j.ijrmhm.2023.106109

    Article  CAS  Google Scholar 

  53. Y. Liu, G. Yang, Z. Hang, H. Fu, N. Xi, and H. Chen, Elevated Temperature Wear Behaviour of CeO2 Modified WC-12Co Coating, J. Rare Earth, 2019, 37, p 673-678. https://doi.org/10.1016/j.jre.2018.11.007

    Article  CAS  Google Scholar 

  54. J.M. Guilemany, J.M. Miguel, S. Vizcaino, and F. Climent, Role of Three-Body Abrasion Wear in the Sliding Wear Behaviour of WC-Co Coatings Obtained by Thermal Spraying, Surf. Coat. Tech., 2001, 140, p 141-146. https://doi.org/10.1016/S0257-8972(01)01033-7

    Article  CAS  Google Scholar 

  55. A.M.F. Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, C.M. Fernandes, E. Soares, J. Sacramento, A.M.R. Senos, and M.G.S. Ferreira, Corrosion Behaviour of WC Hardmetals with Nickel-Based Binders, Corros. Sci., 2019, 147, p 384-393. https://doi.org/10.1016/j.corsci.2018.11.015

    Article  CAS  Google Scholar 

  56. P. Pereira, A.M.F. Rocha, J. Sacramento, F.J. Oliveira, A.M.R. Senos, L.F. Malheiros, and A.C. Bastos, Corrosion Resistance of WC hardmetals with Different Co and Ni-Based Binders, Int. J. Refract. Met. H, 2022, 104, p 105799. https://doi.org/10.1016/j.ijrmhm.2022.105799

    Article  CAS  Google Scholar 

  57. O.O. Ige, S. Aribo, B.A. Obadele, T. Langa, K.M. Oluwasegun, M.B. Shongwe, and P.A. Olubambi, Erosion-Corrosion Behaviour of Spark Plasma Sintered WC-12Co in Aggressive Media, Int. J. Refract. Met. H, 2017, 66, p 36-43. https://doi.org/10.1016/j.ijrmhm.2017.02.005

    Article  CAS  Google Scholar 

  58. S. Hochstrasser, Y. Mueller, C. Latkoczy, S. Virtanen, and P. Schmutz, Analytical Characterization of the Corrosion Mechanisms of WC-Co by Electrochemical Methods and inductiVely Coupled Plasma Mass Spectroscopy, Corros. Sci., 2007, 49, p 2002-2020. https://doi.org/10.1016/j.corsci.2006.08.022

    Article  CAS  Google Scholar 

  59. K. Hu, X. Liu, S. Zhang, Z. Xue, Y. Yang, and K. Yang, Tribocorrosion Behavior of HVOF Sprayed WC-Based Cermet Coatings in Sodium Chloride Solution Environment in Relation to Binder Phases, Surf. Coat. Tech., 2022, 435, p 128248. https://doi.org/10.1016/j.surfcoat.2022.128248

    Article  CAS  Google Scholar 

  60. B. Han, W. Dong, B. Fan, and S. Zhu, Comparison on the Immersion Corrosion and Electrochemical Corrosion Resistance of WC-Al2O3 Composites and WC-Co cemEnted Carbide in NaCl Solution, RSC Adv., 2011, 11, p 22495-22507. https://doi.org/10.1039/D1RA03549E

    Article  Google Scholar 

  61. P.K. Katiyar and N.S. Randhawa, Corrosion Behavior of WC-Co Tool Bits in Simulated (Concrete, Soil, and Mine) Solutions with and Without Chloride Additions, Int. J. Refract. Met. H, 2019, 85, p 105062. https://doi.org/10.1016/j.ijrmhm.2019.105062

    Article  CAS  Google Scholar 

  62. M.H. Martin, and A. Lasia, Influence of Experimental Factors on the Constant Phase Element Behavior of Pt Electrodes, Electrochim. Acta, 2011, 56, p 8058-8068. https://doi.org/10.1016/j.electacta.2011.02.068

    Article  CAS  Google Scholar 

  63. Z. Wei, S. Hong, Z. Wei, N. Hu, G. Ying, and Y. Wu, Comparison on Long-Term Corrosion Performance of WC-CoCr and Al2O3-TiO2 Ceramic Coatings in Sulphide-Containing 3.5 wt% NaCl Solution, Int. J. Refract. Met. H, 2022, 107, p 105906. https://doi.org/10.1016/j.ijrmhm.2022.105906

    Article  CAS  Google Scholar 

  64. F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, and B. Hou, Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy, Surf. Coat. Tech., 2017, 316, p 171-179. https://doi.org/10.1016/j.surfcoat.2017.02.057

    Article  CAS  Google Scholar 

  65. F.J.J. Kellner, H. Hildebrand, and S. Virtanen, Effect of WC Grain Size on the Corrosion Behavior of WC-Co Based Hardmetals in Alkaline Solutions, Int. J. Refract. Met. H, 2009, 27, p 806-812. https://doi.org/10.1016/j.ijrmhm.2009.02.004

    Article  CAS  Google Scholar 

  66. J. Wu, J.P. Cui, Q.J. Zheng, S.D. Zhang, W.H. Sun, B.J. Yang, and J.Q. Wang, Insight into the Corrosion Evolution of Fe-Based Amorphous Coatings Under Wet-Dry Cyclic Conditions, Electrochim. Acta, 2019, 319, p 966-980. https://doi.org/10.1016/j.electacta.2019.07.058

    Article  CAS  Google Scholar 

  67. M. Barletta, G. Bolelli, B. Bonferroni, and L. Lusvarghi, Wear and Corrosion Behavior of HVOF-Sprayed WC-CoCr Coatings on Al Alloys, J. Therm. Spray Tech., 2010, 19, p 358-367. https://doi.org/10.1007/s11666-009-9387-1

    Article  CAS  Google Scholar 

  68. Z. Wang, L. Zhang, X. Tang, Z. Zhang, and M. Lu, The Surface Characterization and Passive Behavior of Type 316L Stainless Steel in H2S-Containing Conditions, Appl. Surf. Sci., 2017, 423, p 457-464. https://doi.org/10.1016/j.apsusc.2017.06.214

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaorun Si.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Sun, H., Li, S. et al. An Investigation of the Effect of Post Heat Treatment on the Wear and Corrosion Behavior of HVOF-sprayed WC-10Co4Cr Coatings. J Therm Spray Tech 32, 2394–2410 (2023). https://doi.org/10.1007/s11666-023-01661-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01661-8

Keywords

Navigation