Skip to main content
Log in

Evolution of Microstructures and Mechanical Properties of Cold Sprayed Copper in Hot Rolling

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hot rolling is an emerging post-processing method for improving mechanical properties of cold sprayed materials. However, the effects of hot rolling on cold sprayed materials are not well clarified. Accordingly, hot rolling assisted with heat treatment was conducted to investigate the effects of hot rolling on plastic deformation of cold sprayed copper bulks. The porosity, crystal grains and dislocation density of copper bulks were characterized through scanning electron microscope, electron back-scatter diffraction and transmission electron microscope. The evolution of pores during hot rolling was simulated using finite element analysis. The microhardness, tensile strength and breaking elongation of the bulks were measured to further explore the effects of hot rolling. The results show that the apparent porosity of the copper bulks sharply decreased due to the dynamic generation and healing processes of the pores in hot rolling. The tensile strength of the copper bulks increased significantly due to the evolution of bonding mechanisms and grain sizes of the copper bulks in hot rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.A. Bronkhorst, J.R. Mayeur, V. Livescu, R. Pokharel, D.W. Brown, and G.T.I.I.I. Gray, Structural Representation of Additively Manufactured 316L Austenitic Stainless Steel, Int. J. Plast., 2019, 118, p 70-86.

    Article  CAS  Google Scholar 

  2. Z. Li, Z.Q. Li, Z.Q. Tan, D.B. Xiong, and Q. Guo, Stress Relaxation and the Cellular Structure-Dependence of Plastic Deformation in Additively Manufactured AlSi10Mg Alloys, Int. J. Plast., 2020, 127, p 102640.

    Article  CAS  Google Scholar 

  3. W.T. Yan, W.J. Ge, J. Smith, S. Lin, O.L. Kafka, F. Lin, and W.K. Liu, Multi-scale Modeling of Electron Beam Melting of Functionally Graded Materials, Acta Mater., 2016, 115, p 403-412.

    Article  CAS  Google Scholar 

  4. T.D. Thomas, C.R. Christian, W. Udisien, and M. Dirk, Probabilistic Fracture of Ti-6Al-4V Made Through Additive Layer Manufacturing, Int. J. Plast., 2016, 78, p 145-172.

    Article  Google Scholar 

  5. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407.

    Article  CAS  Google Scholar 

  6. V.U. Alejandro, C.K. Peter, S. Yang, C. Chu, and J.L. Li, Toolpath Planning for Cold Spray Additively Manufactured Titanium Walls and CORNERS: EFFECT on Geometry and Porosity, J. Mater. Process. Tech., 2021, 298, p 117272.

    Article  Google Scholar 

  7. H.J. Wu, X.L. Xie, M.M. Liu, C. Verdy, Y.C. Zhang, H.L. Liao, and S.H. Deng, Stable Layer-Building Strategy to Enhance Cold-Spray-Based Additive Manufacturing, Addit. Manuf., 2020, 35, p 101356.

    Google Scholar 

  8. Y.K. Kim, K.S. Kim, H.J. Kim, C.H. Park, and K.A. Lee, Microstructure and Room Temperature Compressive Deformation Behavior of Cold-Sprayed High-Strength Cu Bulk Material, J. Therm. Spray. Tech., 2017, 26, p 1498-1508.

    Article  CAS  Google Scholar 

  9. C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, and T.J. Eden, Effect of Substrate Surface Roughening and Cold Spray Coating on the Fatigue life of AA2024 Specimens, Mater. Design., 2014, 54, p 212-221.

    Article  CAS  Google Scholar 

  10. D.M. Jafarlou, B.C. Sousa, M.A. Gleason, G. Ferguson, A.T. Nardi, and D.L. Cote, Solid-State Additive Manufacturing of Tantalum Using High-Pressure Cold Gas-Dynamic Spray, Addit. Manuf., 2021, 47, p 102243.

    CAS  Google Scholar 

  11. H.J. Wu, S.W. Liu, Y.C. Zhang, H.L. Liao, R.N. Raoelison, and S.H. Deng, New Process Implementation to Enhance Cold Spray-Based Additive Manufacturing, J. Therm. Spray. Tech., 2021, 30, p 1284-1293.

    Article  Google Scholar 

  12. J.H. Qin, Q. Huang, X. Wang, X.K. Suo, J. Wang, and H.L. Li, Interfacial Metal/Ceramic Bonding Mechanism for Metallization of Ceramics Via Cold Spraying, J. Mater. Process. Tech., 2021, 288, p 116845.

    Article  CAS  Google Scholar 

  13. M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in as-Sprayed and Heat Treated Condition, Surf. Coat. Tech., 2017, 309, p 641-650.

    Article  CAS  Google Scholar 

  14. L. Alonso, M.A. Garrido, and P. Poza, An Optimization Method for the Cold-Spray Process: On the Nozzle Geometry, Mater. Design., 2022, 214, p 110387.

    Article  CAS  Google Scholar 

  15. Y.C. Xie, M. Planche, R. Raoelison, P. Herve, X.K. Suo, and P.J. He, Investigation on the Influence of Particle Preheating Temperature on Bonding of Cold-Sprayed Nickel Coatings, Surf. Coat. Tech., 2017, 318, p 99-105.

    Article  CAS  Google Scholar 

  16. Y.Y. Wang, B. Normand, N. Mary, M. Yu, and H.L. Liao, Effects of Ceramic Particle Size on Microstructure and the Corrosion Behavior of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Tech., 2017, 315, p 314-325.

    Article  CAS  Google Scholar 

  17. V. Khademi, T.R. Bieler, and C.J. Boehlert, On the Correlation Between Plastic Strain and Misorientation in Polycrystalline Body-Centered-Cubic Microstructures with an Emphasis on the Grain Size, Loading History, and Crystallographic Orientation, Int. J. Plast., 2021, 146, p 103084.

    Article  CAS  Google Scholar 

  18. Y.Q. Ren, P.C. King, Y.S. Yang, T.Q. Xiao, C. Chu, and S. Gulizia, Characterization of Heat Treatment-Induced Pore Structure Changes in Cold-Sprayed Titanium, Mater. Charact., 2017, 132, p 69-75.

    Article  CAS  Google Scholar 

  19. D. Wu, W.Y. Li, K. Liu, Y. Yang, and S.J. Hao, Optimization of Cold Spray Additive Manufactured AA2024/Al2O3 Metal Matrix Composite with Heat Treatment, J. Mater. Sci. Technol., 2022, 106, p 211-224.

    Article  CAS  Google Scholar 

  20. C.Y. Chen, Y.C. Xie, X.X. Yan, S. Yin, H. Fukanuma, and R. Huang, Effect of Hot Isostatic Pressing (HIP) on Microstructure and Mechanical Properties of Ti6Al4V Alloy Fabricated by Cold Spray Additive Manufacturing, Addit. Manuf., 2019, 27, p 595-605.

    CAS  Google Scholar 

  21. Z.Y. Zhao, R.G. Guan, Y.F. Shen, and P.K. Bai, Grain Refinement Mechanism of Mg-3Sn-1Mn-1La Alloy During Accumulative Hot Rolling, J. Mater. Sci. Technol., 2021, 91, p 251-261.

    Article  CAS  Google Scholar 

  22. Z.P. Zhao, N.H. Tariq, J.R. Tang, C.L. Jia, X. Qiu, and Y.P. Ren, Microstructural Evolutions and Mechanical Characteristics of Ti/steel Clad Plates Fabricated Through Cold Spray Additive Manufacturing Followed by Hot-Rolling and Annealing, Mater. Design., 2020, 185, p 108249.

    Article  CAS  Google Scholar 

  23. X. Qiu, N.H. Tariq, L. Qi, Y.N. Zan, Y.J. Wang, J.Q. Wang, H. Du, and T.Y. Xiong, In-situ Sip/A380 Alloy Nano/Micro Composite Formation Through Cold Spray Additive Manufacturing and Subsequent Hot Rolling Treatment: Microstructure and Mechanical Properties, J. Alloys Compd., 2019, 780, p 597-606.

    Article  CAS  Google Scholar 

  24. W.C. Liu, G.H. Wu, C.Q. Zhai, W.J. Ding, and A.M. Korsunsky, Grain Refinement and Fatigue Strengthening Mechanisms in as-Extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr Magnesium Alloys by Shot Peening, Int. J. Plast., 2013, 49, p 16-35.

    Article  CAS  Google Scholar 

  25. S. Li, X.P. Dong, S.R. Guo, R. Ma, D. Xiang, S.L. Lv, X.W. Liu, and H.T. Cao, Phase Evolution and Strengthening Mechanisms in a Cast Magnesium-Zinc-Yttrium-Zirconium Alloy Following Different Heat Treatments, J. Mater. Res. Technol., 2023, 22, p 3270-3279.

    Article  CAS  Google Scholar 

  26. S.K. Sridhar, A.P. Stebner, and A.D. Rollett, Plastic Deformation Mechanisms That Explain Hot-Rolling Textures in Nickel-Titanium, Int. J. Plast., 2022, 153, p 103257.

    Article  CAS  Google Scholar 

  27. W.Y. Li, D. Wu, K.W. Hu, Y.X. Xu, X.W. Yang, and Y. Zhang, A Comparative Study on the Employment of Heat Treatment, Electric Pulse Processing and Friction Stir Processing to Enhance Mechanical Properties of Cold-Spray-Additive-Manufactured Copper, Surf. Coat. Tech., 2021, 409, p 126887.

    Article  CAS  Google Scholar 

  28. S. Yin, X.F. Wang, X.K. Suo, H.L. Liao, Z.W. Guo, W.Y. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61, p 5105-5118.

    Article  CAS  Google Scholar 

  29. G. Johson and W. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31-48.

    Article  Google Scholar 

  30. X.K. Suo, X.P. Guo, W.Y. Li, M.P. Planche, R. Bolot, and H.L. Liao, Preparation and Characterization of Magnesium Coating Deposited by Cold Spraying, J. Mater. Process. Tech., 2012, 212, p 100-105.

    Article  CAS  Google Scholar 

  31. T. Csanádi, N.Q. Chinh, J. Gubicza, G. Vörös, and T.G. Langdon, Characterization of Stress-Strain Relationships in Al Over a Wide Range of Testing Temperatures, Int. J. Plast., 2014, 54, p 178-192.

    Article  Google Scholar 

  32. N.S. Fan, J. Cizek, C.J. Huang, X.L. Xie, Z. Chlup, and R. Jenkins, A New Strategy for Strengthening Additively Manufactured Cold Spray Deposits Through In-process Densification, Addit. Manuf., 2020, 36, 101626.

    CAS  Google Scholar 

  33. D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, and H. Berek, Microstructural Characterisation of Titanium Coatings Deposited Using Cold Gas Spraying on Al2O3 Substrates, Surf. Coat. Tech., 2009, 203, p 3206-3213.

    Article  CAS  Google Scholar 

  34. Q.F. Han and X. Yi, High Pressure-Induced Elimination of Grain Size Softening in Nanocrystalline Metals: Grain Boundary Strengthening Overwhelming Reduction of Intragranular Dislocation Storage Ability, Int. J. Plast., 2022, 146, p 103261.

    Article  Google Scholar 

  35. X.L. Xie, C.Y. Chen, Z. Chen, W. Wang, S. Yin, G. Ji et al., Achieving Simultaneously Improved Tensile Strength and Ductility of a Nano-TiB2/AlSi10Mg Composite Produced by Cold Spray Additive Manufacturing, Compos. Part. B-Eng., 2020, 202, p 108404.

    Article  CAS  Google Scholar 

  36. S. Kanou, O. Takakuwa, S.R. Mannava, D. Qian, V.K. Vasudevan, and H. Soyama, Effect of the Impact Energy of Various Peening Techniques on the Induced Plastic Deformation Region, J. Mater. Process. Tech., 2012, 212, p 1998-2006.

    Article  Google Scholar 

  37. M.C. Murphy, The Engineering Fatigue Properties of Wrought Copper, Fatigue Eng. Mater. Struct., 1981, 4, p 199-234.

    Article  CAS  Google Scholar 

  38. F. Sansoz and X. Ke, Hall-Petch Strengthening Limit Through Partially Active Segregation in Nanocrystalline Ag-Cu Alloys, Acta Mater, 2022, 225, p 117560.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (52171072) and Science and Technology Innovation 2025 Major Project of Ningbo (2020Z042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkun Suo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Yu, M., Huang, Q. et al. Evolution of Microstructures and Mechanical Properties of Cold Sprayed Copper in Hot Rolling. J Therm Spray Tech 32, 2701–2712 (2023). https://doi.org/10.1007/s11666-023-01655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01655-6

Keywords

Navigation