Skip to main content

Advertisement

Log in

Extensive Plastic Deformation to Improve the Mechanical Properties and Electrical Conductivity of Copper through Multistep Cross Rolling

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research work, commercially available pure copper was subjected to 85% rolling in both unidirectional (UDR) and multistep cross rolling (MSCR) methods to achieve ultra-fine grains (UFG). Following rolling, annealing was performed at temperatures ranging from 150 to 350 °C in 100 °C increments for 1 h. The mechanical characteristics and electrical conductivity of rolled copper were compared to as-received deformed copper after UDR and MSCR. A scanning electron microscope was used to examine the microstructure and texture of the samples (electron backscatter diffraction). Mechanical parameters were assessed using microtensile, microhardness, and formability tests (Erichsen cupping test), while electrical conductivity was determined using the four-point probe method. Yield strength and ultimate tensile strength for UDR specimens increased by 150 percent (120 MPa) and 114 percent (526 Mpa), respectively, whereas MSCR specimens increased by 312 percent (198 MPa) and 91 percent (471 MPa) when compared with the base specimen. An excellent combination of mechanical properties and electrical conductivity of about 86.68% IACS (International Annealed Copper Standard) and 88.43% IACS was obtained for both UDR and MSCR, respectively. MSCR specimen had a weaker texture with strong Bs orientation when compared with UDR rolled specimen. Change in strain path with each rolling pass resulted in continuous destabilization of the substrates that substantially weakened the texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASM, Metallurgy, Alloys and Applications. Copp. Copp. Alloy., pp. 3–9, (2001)

  2. Q. Mao, L. Wang, J. Nie, and Y. Zhao, Enhancing Strength and Electrical Conductivity of Cu–Cr Composite Wire by Two-stage Rotary Swaging and Aging Treatments, Compos. Part B Eng., 2022, 231, p 109567. https://doi.org/10.1016/J.COMPOSITESB.2021.109567

    Article  CAS  Google Scholar 

  3. Q. Mao, Y. Zhang, J. Liu, and Y. Zhao, Breaking Material Property Trade-offs via Macrodesign of Microstructure, Cite This Nano Lett, 2021, 21, p 3191–3197. https://doi.org/10.1021/acs.nanolett.1c00451

    Article  CAS  Google Scholar 

  4. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu, Review on Superior Strength and Enhanced Ductility of Metallic Nanomaterials, Progress Mater. Sci., 2018, 94, p 462–540. https://doi.org/10.1016/j.pmatsci.2018.02.002

    Article  CAS  Google Scholar 

  5. Y. Zhao, T. Topping, Y. Li, and E.J. Lavernia, Strength and Ductility of Bi-Modal Cu, Adv. Eng. Mater., 2011, 13(9), p 865–871. https://doi.org/10.1002/ADEM.201100019

    Article  CAS  Google Scholar 

  6. Y.H. Zhao and E.J. Lavernia, The Mechanical Properties of Multi-scale Metallic Materials, Nanostruct. Met. Alloy. Process. Microstruct. Mech. Prop. Appl., 2011 https://doi.org/10.1533/9780857091123.3.375

    Article  Google Scholar 

  7. L.S. Toth and C. Gu, Ultrafine-grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14. https://doi.org/10.1016/J.MATCHAR.2014.02.003

    Article  CAS  Google Scholar 

  8. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60(1), p 130–207. https://doi.org/10.1016/J.PMATSCI.2013.09.002

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later, JOM, 2016, 68(4), p 1216–1226. https://doi.org/10.1007/S11837-016-1820-6/FIGURES/9

    Article  CAS  Google Scholar 

  10. O. Saray, G. Purcek, I. Karaman, and H.J. Maier, Improvement of Formability of Ultrafine-grained Materials by Post-SPD Annealing, Mater. Sci. Eng. A, 2014, 619, p 119–128. https://doi.org/10.1016/J.MSEA.2014.09.016

    Article  CAS  Google Scholar 

  11. C. Pradeep Raja and T. Ramesh, Influence of Size Effects and its Key Issues During Microforming and its Associated Processes–A Review, Eng. Sci. Technol. Int. J., 2021, 24(2), p 556–570. https://doi.org/10.1016/j.jestch.2020.08.007

    Article  Google Scholar 

  12. W.L. Chan and M.W. Fu, Experimental Studies and Numerical Modeling of the Specimen and Grain Size Effects on the Flow Stress of Sheet Metal in Microforming, Mater. Sci. Eng. A, 2011, 528(25–26), p 7674–7683. https://doi.org/10.1016/J.MSEA.2011.06.076

    Article  CAS  Google Scholar 

  13. R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch, Mechanical Behavior of Nanocrystalline Copper, Mater. Sci. Eng. A, 2007, 463(1–2), p 14–21. https://doi.org/10.1016/J.MSEA.2006.07.165

    Article  Google Scholar 

  14. M. Afifeh, S.J. Hosseinipour, and R. Jamaati, Nanostructured Copper Matrix Composite with Extraordinary Strength and High Electrical Conductivity Produced by Asymmetric Cryorolling, Mater. Sci. Eng. A, 2019, 763, p 138146. https://doi.org/10.1016/J.MSEA.2019.138146

    Article  CAS  Google Scholar 

  15. H. Yu et al., High Thermal Stability and Excellent Mechanical Properties of Ultrafine-Grained High-Purity Copper Sheets Subjected to Asymmetric Cryorolling, Mater. Charact., 2019, 153, p 34–45. https://doi.org/10.1016/J.MATCHAR.2019.04.034

    Article  CAS  Google Scholar 

  16. F. Goli and R. Jamaati, Intensifying Goss/Brass Texture Ratio in AA2024 by Asymmetric Cold Rolling, Mater. Lett., 2018, 219, p 229–232. https://doi.org/10.1016/J.MATLET.2018.02.124

    Article  CAS  Google Scholar 

  17. A. Uniwersał, M. Wroński, M. Wróbel, K. Wierzbanowski, and A. Baczmański, Texture Effects due to Asymmetric Rolling of Polycrystalline Copper, Acta Mater., 2017, 139, p 30–38. https://doi.org/10.1016/J.ACTAMAT.2017.07.062

    Article  Google Scholar 

  18. E. Tolouie and R. Jamaati, Effect of β–Mg17Al12 Phase on Microstructure, Texture and Mechanical Properties of AZ91 Alloy Processed by Asymmetric Hot Rolling, Mater. Sci. Eng. A, 2018, 738, p 81–89. https://doi.org/10.1016/J.MSEA.2018.09.086

    Article  CAS  Google Scholar 

  19. F. Goli and R. Jamaati, Asymmetric Cross Rolling (ACR): A Novel Technique for Enhancement of Goss/Brass Texture Ratio in Al-Cu-Mg alloy, Mater. Charact., 2018, 142, p 352–364. https://doi.org/10.1016/J.MATCHAR.2018.06.004

    Article  CAS  Google Scholar 

  20. A. Uniwersał, M. Wróbel, K. Wierzbanowski, S. Wroński, and A. Baczmański, Rolling Asymmetry Effects on Recrystallization Process and on Properties and Microstructure of Annealed Copper, Mater. Charact., 2019, 153, p 136–147. https://doi.org/10.1016/J.MATCHAR.2019.05.001

    Article  Google Scholar 

  21. J. Yang et al., Influence of Low-temperature Annealing Temperature on the Evolution of the Microstructure and Mechanical Properties of Cu-Cr-Ti-Si Alloy Strips, Mater. Sci. Eng. A, 2020, 798, p 140120. https://doi.org/10.1016/J.MSEA.2020.140120

    Article  CAS  Google Scholar 

  22. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium, Scr. Mater., 2003, 49(7), p 669–674. https://doi.org/10.1016/S1359-6462(03)00395-6

    Article  CAS  Google Scholar 

  23. I.V. Ratochka, O.N. Lykova, and E.V. Naidenkin, Influence of Low-temperature Annealing Time on the Evolution of the Structure and Mechanical Properties of a Titanium Ti-Al-V Alloy in the Submicrocrystalline State, Phys. Met. Metallogr. 2015 1163, 2015, 116(3), p 302–308. https://doi.org/10.1134/S0031918X15030114

    Article  Google Scholar 

  24. A.Y. Volkov and I.V. Kliukin, Improving the Mechanical Properties of Pure Magnesium Through Cold Hydrostatic Extrusion and Low-temperature Annealing, Mater. Sci. Eng. A, 2015, 627, p 56–60. https://doi.org/10.1016/J.MSEA.2014.12.104

    Article  CAS  Google Scholar 

  25. X. Chen, C. Liu, Y. Wan, S. Jiang, Z. Chen, and Y. Zhao, Grain Refinement Mechanisms in Gradient Nanostructured AZ31B Mg Alloy Prepared via Rotary Swaging, Metall. Mater. Trans. A, 2021 https://doi.org/10.1007/s11661-021-06364-9

    Article  Google Scholar 

  26. Y. Wan et al., Bulk Nanocrystalline High-strength Magnesium Alloys Prepared via Rotary Swaging, Acta Mater., 2020, 200, p 274–286. https://doi.org/10.1016/J.ACTAMAT.2020.09.024

    Article  CAS  Google Scholar 

  27. X. Huang, N. Hansen, and N. Tsuji, Hardening by Annealing and Softening by Deformation in Nanostructured Metals, Science (80-), 2006, 312(5771), p 249–251. https://doi.org/10.1126/SCIENCE.1124268/SUPPL_FILE/HUANGX.SOM.PDF

    Article  CAS  Google Scholar 

  28. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18(17), p 2280–2283. https://doi.org/10.1002/ADMA.200600310

    Article  CAS  Google Scholar 

  29. Y.H. Zhao et al., Mechanical Behavior, Deformation Mechanism and Microstructure Evolutions of Ultrafine-grained Al During Recovery via Annealing, Mater. Sci. Eng. A, 2020, 772, p 138706. https://doi.org/10.1016/J.MSEA.2019.138706

    Article  CAS  Google Scholar 

  30. H.E. Boyer, Heat Treating of Nonferrous Alloys, Metallogr. Microstruct. Anal., 2013, 2(3), p 190–195. https://doi.org/10.1007/s13632-013-0074-8

    Article  Google Scholar 

  31. H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, and A. Amirafshar, Combined Effect of Heat Treatment and Rolling on Pre-strained and SPDed Aluminum Sheet, Mater. Sci. Eng. A, 2014, 612, p 371–379. https://doi.org/10.1016/J.MSEA.2014.06.044

    Article  CAS  Google Scholar 

  32. M. Afifeh, S.J. Hosseinipour, and R. Jamaati, Effect of Post-annealing on the Microstructure and Mechanical Properties of Nanostructured Copper, Mater. Sci. Eng. A, 2021, 802, p 140666. https://doi.org/10.1016/J.MSEA.2020.140666

    Article  CAS  Google Scholar 

  33. Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419(6910), p 912–915. https://doi.org/10.1038/nature01133

    Article  CAS  Google Scholar 

  34. A. Meng, J. Nie, K. Wei, H. Kang, Z. Liu, and Y. Zhao, Optimization of Strength, Ductility and Electrical Conductivity of a Cu-Cr-Zr Alloy by Cold Rolling and Aging Treatment, Vacuum, 2019, 167, p 329–335. https://doi.org/10.1016/J.VACUUM.2019.06.027

    Article  CAS  Google Scholar 

  35. S. Fujiwara and K. Abiko, Ductility of Ultra High Purity Copper, Le J. Phys. IV, 1995, 05(C7), p C7-295-C7-300. https://doi.org/10.1051/jp4:1995735

    Article  Google Scholar 

  36. V.L. Tellkamp, E.J. Lavernia, and A. Melmed, Mechanical Behavior and Microstructure of a Thermally Stable Bulk Nanostructured Al Alloy, Metall. Mater. Trans. A 2001 329, 2001, 32(9), p 2335–2343. https://doi.org/10.1007/S11661-001-0207-6

    Article  Google Scholar 

  37. M. Rout, S.K. Pal, S.B. Singh, Cross Rolling: A Metal Forming Process. pp. 41–64, 2015, https://doi.org/10.1007/978-3-319-20152-8_2

  38. M. Ostafin, J. Pospiech, R.A. Schwarzer, Microstructure and Texture in Copper Sheets after Reverse and Cross Rolling. https://doi.org/10.4028/www.scientific.net/SSP.105.309

  39. M.R. Jandaghi, H. Pouraliakbar, G. Khalaj, M.J. Khalaj, and A. Heidarzadeh, Study on the Post-rolling Direction of Severely Plastic Deformed Aluminum-Manganese-Silicon Alloy, Arch. Civ. Mech. Eng. 2016 164, 2016, 16(4), p 876–887. https://doi.org/10.1016/J.ACME.2016.06.005

    Article  Google Scholar 

  40. S. Wronski, M. Wrobel, A. Baczmanski, and K. Wierzbanowski, Effects of Cross-rolling on Residual Stress, Texture and Plastic Anisotropy in f.c.c. and b.c.c. Metals, Mater. Charact., 2013, 77, p 116–126. https://doi.org/10.1016/J.MATCHAR.2013.01.005

    Article  CAS  Google Scholar 

  41. N. Nayan, S. Mishra, A. Prakash, S.V.S.N. Murty, M.J.N.V. Prasad, and I. Samajdar, Effect of Cross-rolling on Microstructure and Texture Evolution and Tensile Behavior of Aluminium-Copper-Lithium (AA2195) Alloy, Mater. Sci. Eng. A, 2019, 740–741, p 252–261. https://doi.org/10.1016/J.MSEA.2018.10.089

    Article  Google Scholar 

  42. Y. Geng et al., A Review of Microstructure and Texture Evolution with Nanoscale Precipitates for Copper Alloys, J. Mater. Res. Technol., 2020, 9(5), p 11918–11934. https://doi.org/10.1016/J.JMRT.2020.08.055

    Article  CAS  Google Scholar 

  43. D. Long, S. Liu, J. Zhu, J. Zhang, and X. Yuan, Texture and Microstructure Evolution of Ultra-high Purity cu-0.1Al Alloy under Different Rolling Methods, Crystals, 2021 https://doi.org/10.3390/cryst11091113

    Article  Google Scholar 

  44. N.P. Gurao, A. Ali, and S. Suwas, Study of Texture Evolution in Metastable β-Ti Alloy as a Function of Strain Path and its Effect on α Transformation Texture, Mater. Sci. Eng. A, 2009, 504(1–2), p 24–35. https://doi.org/10.1016/J.MSEA.2008.11.053

    Article  Google Scholar 

  45. N.P. Gurao, S. Sethuraman, and S. Suwas, Effect of Strain Path Change on the Evolution of Texture and Microstructure during Rolling of Copper and Nickel, Mater. Sci. Eng. A, 2011, 528(25–26), p 7739–7750.

    Article  CAS  Google Scholar 

  46. K.H. Song, H.S. Kim, and W.Y. Kim, Enhancement of Grain Refinement and Mechanical Properties of Cross-Roll Rolled Pure Copper, Mater. Trans., 2011 https://doi.org/10.2320/matertrans.M2010406

    Article  Google Scholar 

  47. I.J. Beyerlein, X. Zhang, and A. Misra, Growth Twins and Deformation Twins in Metals Texture: distribution of crystallographic orientations in a material, Annu. Rev. Mater. Res, 2014, 44, p 329–363. https://doi.org/10.1146/annurev-matsci-070813-113304

    Article  CAS  Google Scholar 

  48. C. You et al., High Strength, High Electrical Conductivity and Thermally Stable Bulk Cu/Ag Nanolayered Composites Prepared by Cross Accumulative Roll Bonding, Mater. Des., 2021, 200, p 109455. https://doi.org/10.1016/J.MATDES.2021.109455

    Article  CAS  Google Scholar 

  49. K. Changela, H.B. Naik, K.P. Desai, and H.K. Raval, Effect of Rolling Temperatures on Mechanical and Fracture Behavior of AA 3003 Alloy and Pure Cu, SN Appl. Sci., 2020 https://doi.org/10.1007/s42452-020-2903-0

    Article  Google Scholar 

  50. Q. Mao, Y. Zhang, Y. Guo, and Y. Zhao, Enhanced Electrical Conductivity and Mechanical Properties in Thermally Stable Fine-Grained Copper Wire, Commun. Mater., 2021, 2(1), p 1–9. https://doi.org/10.1038/s43246-021-00150-1

    Article  CAS  Google Scholar 

  51. A. Ghosh, A. Singh, and N.P. Gurao, Effect of Rolling Mode and Annealing Temperature on Microstructure and Texture of Commercially Pure-titanium, Mater. Charact., 2017, 125, p 83–93. https://doi.org/10.1016/J.MATCHAR.2017.01.022

    Article  CAS  Google Scholar 

  52. M. Bodkhe, S. Sharma, A.H.I. Mourad, and P.B. Sharma, An Overview of the Microstructure and Mechanical Properties of Copper Tube by SPD Process, Mater. Today Proc., 2021, 46, p 4289–4294. https://doi.org/10.1016/J.MATPR.2021.03.125

    Article  CAS  Google Scholar 

  53. S.-H. Lee, C.H. Lee, S.Z. Han, and C.Y. Lim, Annealing Characteristics of Nano-Grained Oxygen Free Copper Processed by Accumulative Roll-Bonding Process, J. Nanosci. Nanotechnol., 2020, 6(11), p 3661–3664. https://doi.org/10.1166/JNN.2006.17800

    Article  Google Scholar 

  54. S. Liang, W. Li, Y. Jiang, F. Cao, G. Dong, and P. Xiao, Microstructures and Properties of Hybrid Copper Matrix Composites Reinforced by TiB Whiskers and TiB2 Particles, J. Alloys Compd., 2019, 797, p 589–594. https://doi.org/10.1016/J.JALLCOM.2019.05.129

    Article  CAS  Google Scholar 

  55. A. Habibi and M. Ketabchi, Enhanced Properties of Nano-grained Pure Copper by Equal Channel Angular Rolling and Post-annealing, Mater. Des., 2012, 34, p 483–487. https://doi.org/10.1016/J.MATDES.2011.07.029

    Article  CAS  Google Scholar 

  56. G. Li, S. Morinaka, M. Kawabata, C. Ma, and K. Ameyama, Improvement of Strength with Maintaining Ductility of Harmonic Structure Pure Copper by Cold Rolling and Annealing Process, Procedia Manuf., 2018, 15, p 1641–1648. https://doi.org/10.1016/J.PROMFG.2018.07.292

    Article  Google Scholar 

  57. N.Y. Zolotorevsky, V.V. Rybin, A.N. Matvienko, E.A. Ushanova, and S.A. Philippov, Misorientation Angle Distribution of Deformation-induced Boundaries Provided by their EBSD-based Separation from Original Grain Boundaries: Case Study of Copper Deformed by Compression, Mater. Charact., 2019, 147, p 184–192. https://doi.org/10.1016/J.MATCHAR.2018.11.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep Raja, C., Ramesh, T. Extensive Plastic Deformation to Improve the Mechanical Properties and Electrical Conductivity of Copper through Multistep Cross Rolling. J. of Materi Eng and Perform 32, 10514–10525 (2023). https://doi.org/10.1007/s11665-023-07873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07873-x

Keywords

Navigation